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GENERAL INTRODUCTION 

Over the years there has been great interest in studying the electrochemical 

reactions of redox proteins at various electrode surfaces. Interest in this area is due to the 

possibility of gaining better understanding about the interactive behavior of such proteins 

at biological interfaces. Such studies can not only yield important infomiation about the 

themiodynamics, kinetics and mechanisms of heterogeneous electron transfer reactions of 

the proteins at electrode surfaces, but also will provide novel insights into die electron 

transfer mechanisms of the proteins in vivo. Cytochrome c, an electron earner between 

the cytochrome c reductase and the cytochrome c oxidase, has been the most widely 

studied of all the metalloproteins. The electrochemical reactivity of cytochrome c at bare 

metal electrodes such as platinum, gold, silver and mercury is often highly irreversible and 

in some cases undetectable, but a quasi-ieversible reaction of cytochrome c can be 

observed at so called "promoter-modiHed metal electrodes" such as 4,4'-bipyridine-, bis(4-

pyridyl) disulfide-, and 4-mercaptopyridine-modified gold electrodes. However, the role 

played by the promoters and the mechanisms of the heterogeneous electron transfer 

reaction of cytochrome c at electrode surfaces are not yet fully understood. In this work, 

conventional electrochemical methods were coupled with structure sensitive techniques, 

resonance Raman and surface-enhanced resonance Raman spectroscopies to study the 

electrochemical behavior, electron transfer mechanisms and configurations of cytochrome 

c at nxxlified metal electrode surfaces. This combination can provide structural as well 

as thermodynamic and kinetic information about the reaction of cytochrome c at an 

electrode/solution interface. Four studies were undertaken. The first one reevaluated two 
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promoters which were studied by other research groups and a different electrode 

modification procedure was used. A new adsorption effect on the promoter performance 

was studied. Implications regarding the structural requirennent for the promoter were 

pointed out In the second study several organic promoters containing only one functional 

group were found effective in support of the ideas proposed in the first study. The third 

study involved investigation of the electrostatic interaction between cytochrome c and an 

iodide-modified electrode surface and its role in the electron transfer reaction of 

cytochrome c. A possible mechanism of iodide promoter effects on the electrochemical 

reaction of cytochrome c was suggested. In the fourth study, several cytochrome c 

mutants were characterized by using cyclic voltammetry, resonance Raman and surface-

enhanced resonance Raman spectroscopies to investigate how the mutations affect the 

redox potential, electron transfer kinetics and the stability of cytochrome c, in an effort to 

understand more about the structure^unction relationships in the redox proteins. 

Dissertation Organization 

This dissertation consists of a general introduction and four chapters. Immediately 

following the general introduction and dissertation organization are short summaries of the 

electrochemical behavior of cytochrome c at electrode surfaces and Raman spectroscopy 

of cytochrome c. References cited in the general introduction section then follow. The 

first chapter is a paper published in Journal of Electroanalytical Chemistry, Volume 319, 

page 71-83. The work of Chapter 2 and Chapter 3 was carried out by the doctoral 

candidate, Chengli Zhou, in collaboration with Professor Tianhong Lu at Changchun 

Institute of Applied Chemistry, Chinese Academy of Sciences. Parts of the results in 
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chapter 2 and 3 were published in Chinese Chemical Letters, Volume 3(2), page 133-134; 

Bioelectrochemstry and Bioenergetics, Volume 34, page 153-156; Journal of 

Electroanalytical Chemistry, Volume 369, page 79-86; and Redox mechanisms and 

interfacial properties of molecules of biological importance, page 56-74, Electrochemical 

Society, Pennington, NJ, 1993. Other authors listed on the above papers are T. M. Cotton, 

X. Qu, T. Lu, X. Yu and S. Dong. Chapter 4 is to be submitted to Biospectroscopy. A 

general summary concludes the dissertation. 

Electrochemical Reactions of Cytochrome c at Electrode Surfaces 

Cytochrome c, an electron carrier between the cytochrome c reductase and the 

cytochrome c oxidase, plays an important role in energy transduction in the mitochondrial 

respiratory chain. The primary structure of horse heart cytochrome c consists of a single 

polypeptide chain of 104 amino acids attached to a single iron heme unit [1]. The 

molecular weight of the protein is -12400 Daltons [2]. The atom labeling scheme of the 

heme moiety in cytochrome c, together with a structural diagram showing the saddling 

distortion in the native protein is illustrated in Figure 1 [3]. The two vinyl groups of the 

heme become saturated by the formation of two thioether linkages with two cysteine 

residues 14 and 17. The iron atom is bonded to four pyrrole nitrogens in the porphyrin 

plane. There are two other points of attachment of the heme to the polypeptide (as shown 

in Figure 1) which occur at the fifth and sixth coordinate positions at neutral pH. One of 

these axial ligand bonds is formed with an imidazole nitrogen 18, and the other 

coordination site is furnished by a sulfur atom of the methionine 80. 

The X-ray crystal structure of the oxidized horse heart cytochrome c has been 
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Figure 1. Atom labeling scheme of the heme moiety in cytochrome c, together with 
a structural diagram showing the saddling distortion in the native protein 
(from Ref. 3). 
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determined, and its a-carbon map is illustrated in Figure 2 [4]. Only those amino acids 

attached directly to the heme arc shown in Figure 2. The other amino acids are 

represented by their a-carbon atoms. All the amide linkages (-CO-NH-) are represented 

by a line between each a-carbon atom. As shown in Hguie 2, the polypeptide chain folds 

around the heme group causing it to reside in a nearly hydrophobic environment, leaving 

only a small portion of the heme exposed to the more polar solvent Based on the X-ray 

structure of horse heart cytochrome c, it was reported that the amount of surface area of 

the heme accessible to the solvent forms only about 0.6% of the total surface area of the 

protein [S]. It was also reported that this solvent accessible area is a possible site for 

electron transfer [6]. 

Horse heart cytochrome c is a highly basic water soluble protein with an isoelectric 

point of -10.0 [7]. It contains 19 lysine residues which are positively charged basic 

residues [1]. The basic arginine residues contribute two more positive charges to the 

protein at neutral pH. A maximum of only 13 negatively charged groups can be found, 

3 aspartates, 9 glutamates, and the negative charge on the carboxyl-terminal end of the 

protein [1]. Counting for the +1 charge on the heme in the oxidized state, ferricytochrome 

c has an overall net charge of +9 at neutral pH [2]. However, it must be noted that the 

net charge on cytochrome c can be effectively altered in the presence of binding cations 

and anions. One of the important features about cytochrome c is that the negative and 

positive charges are distinctly segregated on its surface. The left front face contains most 

of the positive charge, while a very high concentration of the negative charge is located 

at the back left portion of the protein. The highly asymmetric distribution of charges over 
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AlaSli 

Figure 2. Molecular structure of cytochrome c. This standard front view of horse 
heart cytochrome c in the oxidized state, illustrates the solvent exposed 
heme edge in the center of the molecule facing towards the reader. Only 
those amino acids attached directly to the heme (MetSO, His 18, Cysl4, 
Cysl7) are shown, all others are represented by circles depicting a-carbon 
atoms of the polypeptide backbone. All amide linkages are represented by 
a line between each a-carbon atom (from Ref. 4). 
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cytochrome c surface leads to a calculated dipole moment of 312 and 300 debye for 

oxidized and reduced cytochrome c, respectively [8]. It was reported that the positive end 

of this dipole is near the ^-carbon of phenylalanine 82 on the front surface [9,10]. The 

negative end of this dipole is near the P-carbon of the asparagine 103 on the back surface. 

Phenylalanine 82 is located near the solvent-accessible heme edge. 

The solvent exposed heme edge is surrounded by lysines 8, 13,27,72,79, 86, and 

87. It has been proposed that electrostatic interactions of these charged lysine residues and 

corresponding dipole are important in the reactions of cytochrome c with its redox partners 

[9,10]. The positive end of the dipole of cytochrome c interacts with the electric fields 

generated by its redox partners. This is believed to guide the molecule into proper 

orientation for electron transfer and therefore increases the number of productive 

encounters. 

The electrochemical properties of cytochrome c were studied as early as the 1930's 

[11]. However, research relating to heterogeneous electron transfer of cytochrome c did 

not attract too much attention until 1977 when the well defmed electrochemistry of 

cytochrome c was observed at an indium oxide electrode [12] and at a 4,4'-bipyridine-

modified gold electrode [13]. The reason for this slow development was the inherent lack 

of communication between cytochrome c and electrode. Such lack of communication led 

to slow and often negligible electron transfer reactions. Slow and irreversible 

heterogeneous electron transfer was attributed to the insulating properties of the protein 

surrounding the molecule's active site, making this site inaccessible to the elecu-ode. Since 

1977, a substantial amount of knowledge has been gathered concerning the interfacial 
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behavior of cytochrome c at various electrode surfaces. At die same time that indium 

oxide electrodes were being used, work on gold electrodes was also being carried out 

Eddowes and Hill [13] were able to enhance the electron transfer reaction of cytochrome 

c at gold electrode, by adding 4,4'-bipyridine to the solution. Such compound was 

different from the electroactive organic molecules used before, called "mediators", whose 

formal potential was within the same range as the biological molecule of interest [14,15]. 

The 4,4'-bipyridine was one of the first molecules known to accelerate the electron 

transfer reaction of cytochrome c while being electroinactive in the potential window of 

the molecule being studied. Therefore, according to Hill et al., the 4,4'-bipyridine was 

designated a "surface promoter" for electrochemical reaction of cytochrome c. 

Modifying electrode surfaces with a surface promoter opened up a new area in 

electrochemistry, by providing a convenient way of investigating direct heterogeneous 

electron transfer reactions of heme proteins. Since the initial report by Hill [13] many 

effective promoters have now been found which can enhance the electron transfer reactions 

of large biological molecules at a variety of different electrode surfaces. Taniguchi et al. 

[16] were the first to report the use of a pre-adsorbed promoter, bis(4-pyridyl) disulfide, 

which exhibited a well defined quasi-reversible electron transfer reaction of cytochrome 

c at a gold electrode, without the need for any promoter in solution. 

Allen et al. [17] have defined the necessary structure-function relationship of 

various promoter molecules that facilitate the electron transfer reaction between electrode 

and cytochrome c. After investigating fifty-four promoters, they have proposed that, in 

order to be an effective promoter, a bifunctional molecule of the X~Y type is necessary. 
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In such a molecule, X represents a functional group which bonds to the metal surface, 

while Y represents a functional group positioned away from the electrode surface, out into 

solution. The surface active end, X, must be an electron pair donor group having either 

a nitrogen, phosphorous, or sulfur atom. The functional end, Y, on the other hand must 

be an ionic or weakly basic group capable of forming a salt bridge and/or hydrogen bond 

to positively charged lysine residues on cytochrome c's surface. Bifunctional promoters 

containing weakly basic pyridyl and aniline-like nitrogen groups were shown to be capable 

of hydrogen bonding to lysine residues, while promoters containing groups like 

caiboxylate, sulfonate, and phosphate were found capable of forming salt bridge with such 

residues. However, in spite of the fact that 2,2'-bipyridine has two functional groups, it 

was reported that it exhibited no promoter effect for electron transfer reactions in 

cytochrome c [17-19]. Thus, it was concluded [17,19] that two functional groups must be 

present at each extremity of the promoter molecule. In addition, Haladjian et al. [19] 

suggested that the promoter molecules must have a minimal length because pyrazine which 

has two functional groups but is shorter than 4,4'-bipyridine, is not active as a promoter 

for cytochrome c electrochemistry [18.19]. The noechanisms by which surface promoters 

might function are still under investigation. 

Parallel to the development of modified electrodes has been the rapid growth in 

interest towards unmodified electrode systems. In the unmodifled electrode systems, there 

is no promoter in the cytochrome c solution, nor on the electrode surface. These systems 

include metal oxide electrodes [12,20-22], non-metal electrodes [23,24], and bare metal 

electrodes [25-27]. For these systems, certain pretreatments are required for either the 
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electrodes or the cytochrome c sample in order to observe the direct heterogeneous 

electron transfer reaction of cytochrome c. 

Raman Spectroscopy of Cytochrome c 

The nature of the resonance Raman effect is that only vibrational modes associated 

with the chromophoric group, the heme in this case, of the molecule are enhanced [28]. 

The consequences of this effect are very important since the remainder of the vibrational 

modes associated with the protein are not enhanced and therefore do not complicate the 

spectra. This is relevant from a physiological standpoint since the technique is both a 

highly selective and extremely sensitive probe of the chromophoric group, which is often 

the site of biological activity. 

Polarization properties can also be used as a diagnostic tool in Raman spectroscopy 

of cytochrome c. By measuring the intensity of the scattered radiation in the parallel (I|) 

and perpendicular (I^) modes, estimates of the depolarization ratios p = Ij/I| can be made. 

These ratios are useful in structure studies of heme proteins since the symmetry of a 

particular vibrational mode can be determined from them. Vibrational bands with 

depolarization ratios of 0.75 ± 0.1 are designated as depolarized (dp), those with 

depolarization ratios lower than 0.75 as polarized (p), and those with ratios greater than 

0.75 as anomalously polarized (ap) [29]. Using these established depolarization ratios 

porphyrin ring modes can be assigned in the Raman spectrum. Totally symmetric 

vibrations give rise to polarized bands. Non-totally-symmetric vibrations produce 

depolarized Raman bands. Anti-symmetric vibrations of the porphyrin ring give rise to 

anomalous polarized bands. 
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In addition to polarization properties, resonance Raman can also provide insight 

into the normal modes of vibration. Resonance Raman scattering will occur when the 

exciting laser line is tuned into an electronic absorption band. Upon resonance with an 

electronic transition some of the Raman bands will be greatly enhanced. Figure 3 shows 

the most prominent absorption bands for cytochrome c [30]. In case of reduced 

cytochrome c, two absorption bands (a and P) are observed at SSO and S20 nm in the 

visible region, and one band (Soret) at 416 nm in the ultraviolet For cytochrome c, the 

non-totally-symmetric and anti-symmetric modes are enhanced upon resonance of the laser 

line with either the a or f) absorption bands [31,32]. On the other hand, when the laser 

line is in resonance with the Soret band, polarized scattering from totally symmetric modes 

are the most predominant vibrations in the spectrum. Therefore, the fact that only certain 

Raman vibrational bands are enhanced imparts a selectivity to the resonance Raman effect 

Figure 4 shows the resonance Raman spectra of cytochrome c with Soret excitation 

(413 nm) [30]. The two important bands are V4 and V3 which relate to the oxidation and 

spin states of cytochrome c. The V4 is an oxidation state marker band whose frequency 

is sensitive to the electron density in porphyrin Jc*-orbitals. This V4 band shifts from 1360 

cm ' in the reduced state to 1373 cm ' in the oxidized state. This has been interpreted in 

terms of 7t back donation from the Fe e^CdJ orbitals to the porphyrin eg(7i*) orbitals [33]. 

Whereas the V4 band is only dependent on oxidation state, the V3 band is sensitive to 

changes in oxidation state, spin state, and coordination of the heme iron. Figure 5 shows 

the correlation chart between iron porphyrin modes and the oxidation-, spin-, and ligation-

state of the heme iron [30]. For a six-coordinate low spin heme of cytochrome c, the V3 
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Figure 3. Adsoiption spectra of cytc^* and cytc^ in aqueous solution (from Ref. 30). 
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Figure 4. Resonance Raman spectra of (A) cytc^* and (B) cyLc'* in aqueous solution 
obtained with 413.1 nm excitation (from Ref. 30). 



www.manaraa.com

14 

Structure correlations of porphyrin modes 

oxidation state 

spin state 

coordination 
number 

1350-

1380-

Av/cni^ 

Fe 
3+ 

LS 
6c 

1373 

HS 
5c 

1373 

HS 
6c 

1370 

Fe 
LS 
6c 

1359 

HS 
5c 

1357 

HS 
6c 

1355 

fS f  

1502 
U91 

U80 
K93 

^L7^  
U63 

1502 
U91 

U80 
K93 

^L7^  

1502 
U91 

U80 
K93 

1502 
U91 K93 

1502 

Figure 5. Correlation chart between iron poiphyrin modes and the oxidation-, spin-, 
and ligation-state of the heme iron (from Ref. 30). 
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frequency is found at 1493 cm ' in the reduced state and 1502 cm ' in the oxidized state. 

In the case of a five-coordinate high-spin reduced state cytochrome c, v, occurs at 1471 

cm ' and shifts to 1491 cm ' for the oxidized state cytochrome c [33,34]. 

Surface-enhanced resonance Raman scattering enables one to characterize in situ 

the interfacial and conformational behavior of a heme protein such as cytochrome c at an 

electrode surface. Although both SERRS and RR spectroscopy give similar Raman 

spectra, there are some differences between them. In SERRS, all bands are essentially 

depolarized, therefore, it is not possible to use polarization measurements to detemiine 

mode symmetries of vibrational bands. Instead, bands must be correlated with previously 

assigned RR bands whose normal mode symmetry has been well established. The surface 

enhanced mechanism is dependent on the particular surface and the state or roughness of 

that surface. The scattering intensity profile has been shown to follow the excitation of 

local surface plasmon resonances [35]. Although the final mechanism of the enhancement 

is still debated, it is generally accepted that there are two major mechanisms called 

"electromagnetic" and "chemical enhancement mechanisms". In the electromagnetic 

enhancement theory it was proposed that the molecules adsorbed at a metal surface 

experience an electric field that is greater than the incident electric field [36]. In the 

chemical mechanism it was proposed that the molecular polarizability is increased by the 

perturbation from the interaction of molecules with the metal surface [37]. 
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CHAPTER 1. REEVALUATION OF 2,2*-BIPYRIDINE AND PYRAZINE AS 

PROMOTERS FOR DIRECT ELECTRON TRANSFER BETWEEN CYTOCHROME C 

AND METAL ELECTRODES 

A paper published in Journal of Electroanalytical Chemistry 

Chengli Zhou, Jea-Ho Kim, Therese M. Cotton, Hanhong Lu and Shaojun Dong 

Abstract 

Results from previous electrochemical studies have indicated that 2,2'-bipyridine 

and pyrazine do not function as promoters for heterogeneous electron transfer between 

cytochrome c and metal electrodes. Their lack of activity was attributed to the improper 

positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of 

pyrazine. In the present study it was determined that both 2,2*-bipyridine and pyrazine 

act as promoters when self-adsoibed over a sufficiendy long dipping time. The promoter 

characteristics of these two molecules were studied and compared with those of 4,4*-

bipyridine. The difference in their promoter behavior appears to result primarily from 

their different strengths of adsorption and not because electrodes modified with 2,2'-

bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reaction in 

cytochrome c. These results have implications regarding the mechanisms of promoter 

effects in electrochemical reactions of cytochrome c. 

Introduction 

The electrochemical reactivity of metalloproteins such as cytochrome c at bare 

metal electrodes, e.g. platinum [1-3], gold [3-6], nickel [7], silver [8] and mercury [4,9-

10], is often highly irreversible and in some cases undetectable. The electrochemical 
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properties of cytochromc c were studied as early as 1933 [11]. However, research relating 

to direct electron transfer between metalloproteins and electrodes did not experience a 

rapid growth until the Hrst clear demonstration of quasi-reversible and direct 

electrochemistiy of cytochrome c at a 4,4'-bipyridine-modified gold electrode [5]. Since 

the first report of promoter activity by 4,4*-bipyridine, various promoters for direct and 

quasi-reversible electrochemical reactivity of metalloproteins, especially that of cytochrome 

c, have been identified [12-23]. Most of the promoters that have been studied are organic 

molecules. 

After an extensive investigation of possible electron transfer promoters, Allen et 

al. [17] concluded that at least two functional groups are required to accelerate direct 

electron transfer between cytochrome c and metal electrodes, one of which binds to the 

surface of the metal electrode and the second of which interacts with amino acid side 

chains on the surface of cytochrome c. However, in spite of the fact that both 4,4*-

bipyridine and 2,2*-bipyridine have two functional groups, only the former accelerated 

direct electron transfer between cytochrome c and metal electrodes, whereas 2,2'-

bipyridine exhibited no promoter effect [12,15,17]. Thus, it was concluded [15,17] that 

the two functional groups must be present at each extremity of the promoter molecule. 

In addition, Haladjian et al. [15] suggested that the promoter molecules must have a 

minimal length because pyrazine which has two functional groups but is shorter than 4,4'-

bipyridine, is not active as a promoter for cytochrome c electrochemistry [12,15]. 

In the present study, the promoter behavior of 2,2'-bipyridine and pyrazine was 

reexamined. Indeed, it was determined that when the two traditional methods were used 
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to modify metal electrodes, (i.e. a gold or silver electrode was placed into the cytochrome 

c solution with 2^*-bipyridine or pyrazine, or dipped in the solution of 2,2'-bip]rridine or 

pyrazine for few minutes and then transferred to the cytochrome c solution [12,15,16] no 

response was observed in the cyclic voltammetry (CV) of cytochrome c, indicating that 

these compounds are not effective promoters under these conditions. However, if the gold 

or silver electrode was dipped into a solution of 2,2'-bipyridine or pyrazine for several 

hours and then transferred to the cytochrome c solution, a quasi-reversible CV response 

was observed indicating that these molecules can function as pronwters under the 

appropriate conditions. Their promoter characteristics were studied and compared with 

those of 4,4''-bipyridine. Differences in their promoter behavior appear to result primarily 

from their different strengths of adsorption. 

Experimental 

Horse heart cytochrome c (type VI, Sigma Chemical Co.) was used without further 

purification. 4,4'-bipyridine, 2,2'-bipyridine and pyrazine (Aldrich Chemical Co.) were 

the highest purity available (>99%) and were used as received. All other chemicals were 

reagent grade. A BAS ICX) electrochemical analyzer and a conventional three-electrode 

electrochemical cell were used for the electrochemical measurements. The woridng 

electrode was constructed from a gold or silver rod which was sealed into glass tubing 

with Torr Seal (Varian). The exposed area was about 5.0 mm^ for the gold electrode and 

3.0 mm^ for the Ag electrode. A Pt wire was used as the auxiliary electrode. A saturated 

calomel electrode (SCE) served as a reference electrode and all the potentials are reported 

with respect to the SCE. 
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The modified electrodes were prepared according to the following procedure. The 

woildng electrode was sequentially polished with S, 0.3, O.OS pm alumina/water slurries 

until a shiny, mirrorlike finish was obtained. It was then sonicated in distilled water and 

washed thoroughly with distilled water. For the SERS measurements on Ag, the electrode 

was roughened in a 0.1 M Na2S04 by an oxidation reduction cycle (ORG). This consisted 

of a double-potential step from -SOO mV to +500 mV, where 25 mC/cm' charge was 

allowed to pass, and the electrode was stepped back to -500 mV to reduce the Ag*. The 

ORG was performed in the dark in order to get better roughened surfaces. For SERS 

measurements on Au, the electrode was cleaned prior to ORG by cathodization at -2.2 V 

for 10 seconds. It was then roughened by a computer controlled ORG procedure [24]. The 

electrode potential was varied from -300 mV to +1300 mV for 25 cycles in a 0.1 M KQ 

solution. 

Following the polishing, the surface nxxlification was performed by dipping the 

electrode into a 1 mM solution of the promoter for a defined time period, after which the 

electrode was rinsed twice with distilled water. Next, the promoter-modified working 

electrode was mounted in the electrochemical cell containing 0.38 mM cytochrome c 

solution, 0.025 M phosphate buffer at pH 7 and 0.1 M sodium perchlorate as a supporting 

electrolyte. 

Surface enhanced Raman Scattering (SERS) spectra were acquired from the sample 

adsorbed on a silver sol. The silver sol was prepared according to a literature procedure 

[25]. One liter of 1 mM silver nitrate solution was degassed by heating to the boiling 

point Next, 20 ml of 3.4 mM sodium citrate solution was added dropwise to the silver 
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nitrate solution with vigorous stirring. The mixture was maintained at boiling point for 

one hour and the final volume was adjusted to 1 liter with distilled water. The samples 

were prepared by mixing one volume of 1 mM aqueous solution of the promoter with an 

equal volume of silver sol. In order to compare the relative adsorption strengths of two 

promoters, one volume of an aqueous solution containing a mixture of the two pronwters, 

each at O.S mM concentration, was mixed with one volume of silver sol. The samples 

were transferred to S mm glass tubes for Raman measurements. For the SERS 

experiments at 2,2'-bipyridine-modified electrodes (Ag and Au), the roughened electrodes 

were dipped into a 1 mM 2,2'-bipyridine solution for 30 minutes, after which the 

electrodes were rinsed with distilled water. Then the 2,2'-bipyridine-modified electrodes 

were transferred to the electrolyte solution containing 0.02S M phosphate buffer at pH 7 

and 0.1 M sodium perchlorate for SERS measurements. 

The Raman instrumentation used in diese experiments has been described 

previously [26]. SERS spectra were acquired in the backscattering geometry. Hie 488.0 

nm or 514.5 nm (ca. 30 mW) of a Coherent Innova 90-5 Ar^ laser was used as the 

excitation source for SERS measurements on Ag, and the 647.1 nm line of a Coherent 

Innova 100 Kr'^ was used for SERS measurements on Au. The resolution of the Raman 

instrument is ca. 2 cm'* at the excitation wavelengths used here. Indene was used to 

calibrate the Raman frequencies. 

Results 

In previous studies [12,15,16], two methods were used to modify gold electrodes 

for cytochrome c electrochemistry. In one method, the electrode was placed into the 
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solution of cytochionne c with 1 mM of 2^^-bipyridine or pyiazine. In the second 

method, the electrode was dipped into a 1 mM solution of 2,2'-bipyiidine or pyrazine for 

a few minutes and then transferred to a cytochrome c solution. When these methods were 

used to modify a gold electrode in the present study, no response was observed in the 

cyclic voltammetry measurements on cytochrome c confmning that 2,2'-bipyridine and 

pyrazine are inactive under these conditions. This result is consistent with that reported 

by Eddowes and Hill [12]. However, it was found that when the gold electrode was 

dipped in 1 mM 2,2*-bipyiidine or pyrazine solution for more than 30 minutes, then rinsed 

with distilled water and placed in the cytochrome c solution, protein reduction was 

observed near 0.01 V, the formal potential of cytochrome c. Figure lA and IB show 

cyclic voltammograms of cytochrome c at 2,2'-bipyridine- and pyrazine-modified 

electrodes. It can be seen that for relatively short dipping periods (Curves a and b), the 

curves are sigmoidal in shape. Possible reasons for this shape will be discussed below. 

With dipping times of 6 hours or greater, distinct peaks were observed in the CV response 

and the peak separation decreased as the dipping time was increased. Similar results were 

also observed using silver electrodes. Figure ID shows the CV response of cytochrome 

c at a silver electrode that was exposed to pyrazine for increasing time periods. A 

comparison of Figure IB and ID shows that pyrazine is a more effective promoter with 

Au electrodes as compared with Ag. The reduction current is less and the peak separation 

is greater for pyrazine-modified Ag electrodes even after 12 h of exposure to the pyrazine 

solution. 

The peak separation (AE^) in the CV response for cytochrome c obtained from 
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Figure 1. Cyclic voltanunograms of 0.38 mM cytochrome c at a (A) 2,2'-bipyridine-
modified gold electrode; (B) pyrazine-modified gold electrode; (C) 4,4'-
bipyridine-modiHed gold electrode and (D) pyrazine-modified silver 
electrode in phosphate buffer solution (pH = 6.97) with 0.1 M NaCI04. The 
dipping times were as follows: (a) 2 min.; (b) 30 min.; (c) 6 h.; (d) 12 h. 
The scan rate was 50 mV/s and the initial potential was +0.2 V. 
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electrodes which were dipped for 12 h in 4,4'-bipyridine solution (Figure IC) is about 60 

mV. The AEp for 2^*-bipyTidine- and pyrazine-modified electrodes is approximately 80 

mV at a scan rate of SO mV/s, which is nearly the same as that observed for cytochrome 

c at bis(4-pyridyl) disulflde- [13] or puiine-modified [16] electrodes and only slightly 

greater than that for a fully reversible one-electron redox reaction. The midpoint between 

the cathodic and anodic peak potentials is near 0.01 V which is in good agreement with 

the formal potential of cytochrome c [12,13]. The ratio of the anodic to cathodic peak 

current is approximately unity. 

Curve a in Figure 2 illustrates the relationship between the peak separation in the 

cytochrome c cyclic voltammograms for exposure of the electrodes to 2,2'-bipyridine for 

time periods ranging between 6 and 14 h (i.e. conditions under which distinct peaks are 

observed in the CV response). It can be seen that initially the peak separation decreases 

rapidly with dipping time and reaches a stable value after about 10 h. The same behavior 

was observed for pyrazine-modified electrodes. In contrast with the above results, the 

performance of the 4,4'-bipyiidine-modified electrode was optimal after exposing the 

electrode to the solution for only a few minutes and no further change resulted with 

increased dipping time (Figure 2, curve b). 

Figure 3 shows the CV response for cytochrome c at a 2,2'-bipyridine-modified 

gold electrode at different scan rates. A plot of the peak current (corrected for the 

background current) for both the cathodic and anodic peaks shows a linear increase as a 

function of the square root of the scan rate (Figure 4). The same behavior was observed 

for pyrazine-modified electrodes, demonstrating that the electrochemical reaction rate of 
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Figure 2. Dependence of the peak separation in the cyclic voltammogranis of 
cytochrome c on the dipping time of the modification procedure: (a) 2,2'-
bipyridine-modified gold electrode, (b) 4,4'-bipyridine-modified gold 
electrode. 
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Figure 3. Cyclic voltammograms of 0.38 mM cytochrome c at a 2,2'-bipyridine-
modified gold electrode in phosphate buffer solution (pH = 7.0) with 0.1 
M NaC104 as the electrolyte at the following scan rates: (a) 10; (b) 25; (c) 
50; (d) 100; (e) 200; (f) 500 mV/s. The electrode was dipping in Ae 2,2'-
bipyridine solution for 12 h. The initial potential was 40.2 V. 
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Figure 4. Scan rate dependence of the peak current for cytochrome c reduction at a 
2,2'-bipyridine-modified gold electrode. 
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cytochrome c at 2,2'-bipyridine- or pyiazine-modified gold electrode is diffusion-

controlled. In addition, 2,2'-bipyridine and pyrazine have no electrochemical response in 

the potential range from -0.2 V to 40.2 V. Therefore, all of the above characteristics 

suggest a quasi-reversible, direct electron transfer reaction between cytochrome c and 2,2'-

bipyridine- or pyrazine-modified gold electrodes that were prepared using a 12 h dipping 

period. Thus, 2,2'-bipyridine and pyrazine are effective promoters when adsorbed on the 

electrode surface. 

The lifetime of the 2,2'-bipyridine- or pyrazine-modified electrode is different from 

that of a 4,4'-bipyridine-modified electrode. For example, after 25 continuous cycles the 

CV response of cytochrome c at 4,4*-bipyridine-modified electrode is changed only 

slighdy (Figure SC). However, the stabiliQr of the 2,2'-bipyridine- or pyrazine-modified 

electrode is much less than that of the 4,4'-bipyridine-modified electrode. After 25 

continuous cycles, the redox peaks for cytochrome c at electrodes modified with the 

former compounds are barely observed (Figures 5A and 5B, curve f). Moreover, if the 

2,2'-bipyridine- or pyrazine-modified electrodes are allowed to remain in contact with 

cytochrome c solution for 5-10 min. without scanning, the redox peaks also disappear. 

In the above experiments, no promoter was present in the cytochrome c solution. 

If, after modification of the electrode was complete, 1 mM 2,2'-bipyridine was added to 

the cytochrome c solution before electrochemical measurements were undertaken, the 

perfomiance of the electrode decreased only slightly after 25 continuous cycles (Figure 

5D, curve f). However, when 1 mM pyrazine was added to the cytochrome c solution, the 

peak currents decreased at the same rate as in the absence of pyrazine. 
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Figure 5. Cyclic voltanmiograms of 0.38 mM cytochrome c solution at (A) 2,2'-
bipyridine-, (B) pyrazine-, and (C) 4,4'-bipyridine-modified gold electrodes 
as a function of the number of scans: (a) 1st; (b) Sth; (c) 10th; (d) ISth; (e) 
20th; (f) 2Sth cycle. In Figure (D), the conditions were the same as for (A) 
except that 1 mM 2,2'-bipyridine was added to the cytochrome c solution. 
The scan rate was SO mV/s and the initial potential was -H).2 V. 
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The different promoter behavior of 2^*-bipyridine, pyrazine and 4,4'-bipyridine 

described above i^pears to be direcdy related to the different adsorption strengths of these 

promoters on the gold or silver surfaces. This was determined from surface-enhanced 

Raman scattering (SERS) spectroscopy, as will be described below. Based upon the 

spectroscopic results, the relative strengths of adsoipdon are as follows: 4,4'-bipyridine 

> 2,2'-bipyridine > pyrazine. 

SERS provides a powerful method for comparing the adsorption behavior of a 

broad range of molecules on metal surfaces [27,28]. However, the observation of SERS 

signals requires that the surface is roughened by one of several procedures. Most 

commonly, an oxidation reduction cycle is used. The 2,2'-bipyridine-modified Au and Ag 

electrodes were examined by SERS. Two types of experiments were performed. First, 

the relative adsorption strength of the modiHers was compared by adding 1 ml each of 1 

mM solution of 2,2*-bipyridine and 4,4'-bipyridine to 2 ml of a silver sol. The resulting 

SERS spectrum was that of 4,4'-bipyridine alone, showing that the adsorption ability of 

4,4'-bipyridine on silver surface is stronger than that of 2,2'-bipyridine. Similarly, it was 

found that the adsorption ability of 2,2*-bipyridine is stronger than that of pyrazine. 

Finally, the same procedure was used for a mixture of pyrazine and cytochrome c, and 

only the spectrum of cytochrome c was observed, indicating that cytochrome c is more 

strongly adsorbed than pyrazine. 

In the second type of experiment, SERS spectra were obtained on Ag and Au 

electrodes. Figure 6 shows that the 2,2'-bipyridine-modified Au and Ag electrodes give 

rise to the same SERS spectra in the presence of the electrolyte solution used for the 
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Figure 6. Surface-enhanced Raman scattering (SERS) spectra of 2,2'-bipyiidine 
modified (A) Au and (B) Ag electrodes in 0.1 M NaC104 containing 25 mM 
phosphate buffer pH 7. The electrode potential was -200 mV. SERS spectra 
were recorded using 647.1 nm excitation (Au) and S14.S nm excitation 
(Ag). The laser power was 100 mW and the spectra are composed of 25 
scans. The integration time was 1 second per scan. 
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cytochrome c electrochemistiy. An analysis of the spectra showed that the 2,2*-bipyridine 

is adsorbed in the cis form, as was observed in previous investigations [29,30]. 

Discussion 

The results described above demonstrate that when a self-adsorption procedure is 

used with a sufficiently long dipping time, both 2,2'-bipyridine and pyrazine can function 

as electron transfer promoters and accelerate the electrochemical reactivity of cytochrome 

c. Thus, it appears that an effective promoter does not require a structure with two 

functional groups at each extremity of the molecule or a minimal length as suggested by 

Allen et al. [17] and Haladjian et al. [IS]. In the case of 2,2*-bipyridine molecule the two 

nitrogen atoms are located on the same side of the molecule (cis isomer) when coordinated 

to metal ions. The SERS spectra verify that this structure is also present on Ag and Au 

electrode surfaces. Under these conditions it is not possible to have one nitrogen bound 

to the electrode surface while the other is attached to the cytochrome c molecule. To 

observe the promoter effect, a much longer dipping time is required for 2,2*-bipyridine and 

pyrazine, as compared to 4,4*-bipyTidine. This requirement appears to be related to their 

different adsorption strengths, as demonstrated by SERS. 

The adsorption strength affects not only the dipping time, but also the lifetime of 

the modiHed electrodes. Because the adsorption strength of 2,2'-bipyridine or pyrazine 

on gold or silver surface is weaker than that of 4,4'-bipyridine, the performance of 

electrodes modified with the former two compounds declines rapidly with repeated cycling 

of the electrode potential whereas the performance of 4,4'-bipyridine-modified electrode 

is stable. Competitive adsorption between the promoter and cytochrome c is also an 
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important factor with respect to the lifetime of the modified electrodes. The 

electrochemical stability of the modified electrode in cytochrome c solution is greater 

when 2^'-bipyridine is also present in solution indicating that the adsorption ability of 

2,2*-bipyridine on gold surface appears comparable to that of cytochrome c. In contrast, 

the presence of pyraane in the cytochrome c solution does not affect the lifetime of the 

pyrazine-modified electrode. This is because the adsorption strength of pyrazine is much 

weaker than that of cytochrome c and the adsorbed pyrazine molecules are replaced with 

cytochrome c molecules even in the presence of pyrazine. Once cytochrome c is adsorbed 

directly on the surfaces of bare metal electrodes it can undeigo conformational changes 

which lead to a change in its redox potential and the loss of electron transfer activity [31]. 

The adsorbed protein can block electron transfer between the electrode and cytochrome 

c in solution. 

The shape of the cytochrome c cyclic voltammograms at 2,2'-bipyridine-modifled 

electrodes is reminiscent of the sigmoidal shape that is characteristic of radial diffusion. 

As pointed out by Armstrong et al. [32] such curves can be interpreted in terms of a 

microscopic model of the electron transfer reaction of cytochrome c at graphite electrodes. 

Similarly, the electrochemical response of two other proteins, plastocyanin and ferredoxin, 

was successfully analyzed in terms of this model [33]. The results reported herein support 

the possibility that microscopic regions of the electrode are active during the initial stages 

of electrode modiHcation with weakly adsorbed species such as 2,2'-bipyridine. Following 

long term exposure to the modifiers, the response is typical of a linear diffusion process 

and peak shaped voltammograms are observed. 
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From the above results it appears that a major requirement for an effective 

promoter is that it adsorb strongly to die metal surface. Consequently, a correct evaluation 

of the effect of molecular structure on die promoter ability requires a consideration of the 

adsorption strength of the molecule. The fact that a promoter effect is not observed for 

2,2'-bipyridine following a dipping time of only few minutes does not indicate that the 

structure of these molecules is not appropriate for promoter activity. It is important that 

other immobilization methods be attempted, such as self-adsoiption with varying dipping 

times. A similar result was reported by Bardett and Farington [23] who found that 5-

carboxyindole did not show a promoter effect when it was added to a cytochrome c 

solution. However, when the compound was coated on the electrode surface by 

electropolymerization a promoter effect was observed. From this point of view, adsoiption 

over a prolonged dipping time for the modification procedure may be better than the 

method commonly used to evaluate the effect of the structure on promoter effects. This 

approach should minimize differences caused by variations in the adsorption strengdi of 

the molecules. Further experiments are underway to examine a series of potential new 

promoters and to explore the nature of the promoter mechanisms. 
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CHAPTER 2. DIRECT ELECTROCHEMISTRY OF CYTOCHROME C AT GOLD 

ELECTRODES MODIFIED WITH ORGANIC COMPOUNDS CONTAINING ONE 

FUNCTIONAL GROUP 

Introduction 

Cytochrome c does not undergo a fast and direct election transfer at metal 

electrodes despite the fact that it is readily oxidized or reduced by chemical reagents and 

in the living organisms [1^]. Thus, research relating to direct electron transfer between 

cytochrome c and a metal electrode did not experience a rapid growth until the first clear 

demonstration of quasi-reversible and direct electrochemical reaction of cytochrome c at 

the 4,4*-bipyridine-modified gold electrode by Hill and cowoikers [3]. 4,4'-bipyridine v^as 

termed a "promoter" of the electron transfer process because it does not undergo 

electrochemical reactions within the potential range used to reduce or oxidize cytochrome 

c. 

Following the initial observation of Hill and coworicers, an extensive research effort 

has been devoted to the study of new promoters and the mechanism of the heterogeneous 

electron transfer process between cytochrome c and the promoter-modified metal electrode. 

To date, most of the eflfective promoters that have been studied are organic compounds, 

such as l,2-bis-(4-pyridyl) ethylene [3], bis(4-pyridyl) disulfide [4] and purine [5] etc. 

After the study of more than 50 organic promoters. Hill and his coworicers concluded [6,7] 

that a promoter should be bifunctional. 
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In the previous chapter [8], it was reported that 2^'-bipyridine is an effective 

promoter. It was found that a major requirement for an effective promoter is that it 

adsorbed strongly at the metal surface. In addition, surface-enhanced Raman spectroscopy 

studies showed that 2,2'-bipyridine adsorbed on a gold surface is in the cis form, and thus 

it was inferred that compounds with only one functional group may also be effective 

promoters. 

In this study, several compounds with only one functional group, including 

carbazole, pyridine and thiophene, were examined as potential promoters. All three were 

found to behave as promoters, but their effectiveness is somewhat different because of 

variations in their adsorption strength at the gold surface. 

Experimental 

Horse heait cytochrome c (type VI, Sigma Chemical Co.) was used without further 

purification. Carbazole, pyridine and thiophene (Aldrich Chemical Co.) were the highest 

purity available (>99%) and were used as received. All other chemicals were reagent 

grade. 

A BAS 100 electrochemical analyzer and a conventional three-electrode 

electrochemical cell were used for the electrochemical measurements. The woridng 

electrode was constructed from a gold rod which was sealed into glass tubing with Ton-

seal (Varian). The exposed area was approximately 8 mml A Pt wire was used as the 

auxiliary electrode. A saturated calomel electrode (SCE) served as the reference electrode 

and all the potentials are reported with respect to the SCE. 

The film transfer method [5,6] was used to evaluate the ability of carbazole. 
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pyridine and thiophene to function as promoters. In this method, the modified electrodes 

were prepared by the following procedure. The working electrode was sequentially 

polished with S, 0.3, O.OS pm alumina/water slurries until a shiny, minorlike finish was 

obtained. The electrode was then sonicated in deionized water and washed dioroughly 

with deionized water. Surface nKxlification of the working electrode was cairied out by 

dipping the freshly polished working electrode into 1 mM pyridine or thiophene solution, 

or into a saturated solution of carbazole for a defined time period, followed by rinsing 

twice with deionized water. 

The electrochemical studies of cytochrome c were carried out at the modified 

electrode in 0.38 mM cytochrome c solution with 0.02S M phosphate buffer at pH 7.0 and 

0.1 M sodium perchlorate. Oxygen was purged from solution by bubbling with nitrogen 

for 10 minutes prior to the electrochemical measurement The scan rate was usually SO 

mV/s and the initial potential was 40.2 V. The potential range of scanning was from -0.2 

V to 40.2 V. 

After surface modification of the working electrode, the surface of the modified 

electrode was dried in air and then X-ray photoelectron spectroscopy (XPS) measurements 

were carried out at the normal operating temperature (315 K) using a ESCALAB-MK II 

spectrometer with the monochromatic A1 radiation. The spectra calibrations were 

made with respect to the C(ls) spectral line at 284.6 eV. 

Results 

Cytochrome c did not undergo reversible electron transfer at a freshly polished gold 

electrode, and no response was observed in its cyclic voltammogram (CV). After 
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modiHcation of a freshly polished gold electrode with thiophene, it was found that its 

open-circuit potential was about ISO mV more negative than that for the unmodiHed 

electrode. In addition, a well-defined pair of redox peaks in the CV of cytochrome c was 

observed at the thiophene-modified gold electrode after a 60 minute dipping time in the 

modlHcation procedure (Figure 1). This current is entirely due to cytochrome c because 

thiophene exhibits no electrochemical response in the potential range from -0.2 V to +0.2 

V. The difference AE^ between the cathodic and anodic peak potential is about 72 mV, 

which is only slightly larger than that for a fully reversible one-electron transfer reaction. 

According to Nicholson's method [9], the heterogeneous electron transfer rate constant, 

k,, was determined to be 4.95 x 10'^ cm/s. The midpoint between the cathodic and anodic 

peak potentials was approximately -tO.Ol V, which is close to the formal potential of 

cytochrome c [10]. The ratio of the anodic to cathodic peak current is approximately 

unity. The cathodic and anodic peak currents are proportional to the square root of the 

scan rate in the range 10-500 mV/s, indicating that the reaction is diffusion controlled. 

All the characteristics mentioned above demonstrate that a quasi-reversible, direct 

electrochemical reaction of cytochrome c occurs at the thiophene-modified gold electrode. 

The performance of the thiophene-modified gold electrode is very stable, with the 

peak currents showing almost no change after 100 continuous cycles. Even after several 

days, the CV response was nearly the same as that observed initially. Therefore, it can 

be concluded that thiophene is an excellent promoter. 

It was found that the performance of the thiophene-modified gold electrode is 

dependent on the dipping time. Figure 2 shows dependence of the AEp in the CV of 
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Figure 1. Cyclic voltammograms of 0.38 mM cytochrome c at (a) a fi^eshly polished 
gold electrode and (b) a thiophene-modified gold electrode in phosphate 
buffer solution (pH 7.0) with 0.1 M NaC104. The scan rate was 50 mV/s 
and the initial potential was -K).2 V. 
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Figure 2. Dependence of the peak separation AEp in the cyclic voltanunograms of 
cytochrome c on the dipping times used in the preparation of thiophene-
modified gold electrodes. 
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cytochrome c on the dipping times in the modification procedure. It can be noted that the 

AF^ decreases with increase in the dipping time. For example, a of more than 100 

mV was observed for a dipping time of just a few minutes. For dipping times of more 

than 1 h AEp reached a stable value, 72 mV. 

Figure 3 shows the peaks in the x-ray photoelectron spectroscopy spectra of 

thiophene adsorbed on surfaces of the gold electrodes for the different dipping times in 

modification procedure. It can be seen from Figure 3 that the peak intensity becomes 

greater with increasing dipping time, indicating that the amount of thiophene adsorbed on 

the electrode surface increases. 

The behavior of carbazole and pyridine as promoters were different from that of 

thiophene. A saturated caibazole solution was used to modify the gold electrode because 

of the low solubility of carbazole in aqueous media. When a fieshly polished gold 

electrode was dipped in the saturated solution of carbazole for less than 30 minutes, no 

response was observed in the cyclic voltammogram of cytochrome c, indicating that 

carbazole does not act as a promoter under these conditions. However, when the dipping 

time was increased to more than one hour, a pair of redox peaks was observed in the CV. 

In addition, the separation between the cathodic and anodic peak potentials (AEp) 

decreased with an increase in the dipping time and reached a stable value for dipping 

times greater than 12 hours (Figure 4). The AEp in the CV of cytochrome c at the 

carbazole-modified gold electrode prepared by dipping the electrode in carbazole solution 

for 12 hours was 74 mV at a scan rate of 50 mV/s. The heterogeneous electron transfer 

rate constant, k,, was determined to be 4.54 x 10"' cm/s. The midpoint between the 
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Dependence of the intensity of the S2p peak in the XPS spectra of thiophene 
adsorbed on the surface of the gold electrode on the dipping time of 
modification procedure. The dipping times were as follows: (a) IS minutes, 
(b) 30 minutes, (c) 45 minutes. 
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Figure 4. Cyclic voltanunograms of 0.38 mM cytochrome c at a carbazole-modified 
gold electrode in phosphate buffer solution (pH 7.0) with 0.1 M NaClQ*. 
The dipping times were as follows: (a) 2 minutes, (b) 30 minutes, (c) 6 h, 
(d) 12 h. The scan rate was 50 mV/s and the initial potential was -fO.2 V. 
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cathodic and anodic peak potentials was approximately -fO.Ol V, which is close to the 

formal potential of cytochrome c [10]. The cathodic and anodic peak currents were 

proportional to the square root of the scan rate in range 10-500 mV/s. indicating that the 

reaction is diffusion controlled. The peifomiance of the carbazole-modified gold electrode 

was not very stable. The AEp in the CV of cytochrome c at caibazole-modified gold 

electrode increased slighdy with continuous cycling. For example, the AEp for the first 

cycle was 74 mV, whereas it was 88 mV after 25 continuous cycles. 

The behavior of pyridine as a promoter was similar to that of carbazole. For 

example, the dependence of AEp on the dipping time for pyridine was also observed. 

However, the AEp in the CV of cytochrome c at the pyridine-nxxlified gold electrode 

prepared with a 12 hour dipping time was 134 mV which is much larger than that for 

carbazole. The corresponding k, is 7.01 x 10"* cm/s. The performance of the pyridine-

modified gold electrode was also not stable. After 25 continuous cycles, the AEp was 

greater than 160 mV (Figure 5). These results indicate that although pyridine can function 

as a promoter, it is not as effective as carbazole. 

Discussion 

From the results described above, it can be concluded that compounds with only 

one functional group, such as thiophene, carbazole and pyridine, can function as electron 

transfer promoters and accelerate the electrochemical reaction of cytochrome c at gold 

electrodes. 

The results of this investigation provide information regarding the possible 

mechanism for the promoter effect The mechanism for the quasi-reversible, direct 
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Figure S. Cyclic voltammograms of 0.38 mM cytochrome c at a pyridine-modifled 
gold electrode in phosphate buffer solution (pH 7.0) with 0.1 M NaC104. 
The dipping time was 12 h. (a) the first cycle, (b) the 25th cycle. The scan 
rate was 50 mV/s and the initial potential was 40.2 V. 
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electrochemistry of cytochrome c at the promoter-modified metal electrodes is not well 

understood. Several possible mechanisms have been proposed. Hill and his coworkers 

suggested [6,7] that the oiganic promoters should be bifuncdonal. One functional group 

of the promoter binds to the electrode surface and the second interacts with lysine -NHj* 

groups of cytochrome c through hydrogen bonding or salt bridging. An electron transfer 

pathway is thus formed between cytochrome c and the electrode surface and the 

electrochemical reaction of cytochrome c is accelerated. In addition, after the study of the 

electron transfer reaction of cytochrome c at a 4,4*-bipyridine-modified gold electrode. Hill 

concluded [11] that rapid adsorption and desorption of cytochrome c on the electrode 

surface is necessary for fast electron transfer. Niki and coworkers [12,13] demonstrated 

that the promoter can prevent adsoiption of denatured cytochrome c on the surface of the 

metal electrode which results in the irreversible electrochemical reaction of cytochrome 

c. Surface enhanced resonance Raman spectroscopy of cytochrome c [14] also indicated 

that direct adsorption of cytochrome c on the surface of the metal electrode leads to a 

structural change of cytochrome c and rupturing or weakening of the methionine bond, 

while cytochrome c adsorbed on the modified electrode surface retains its native structure. 

It was suggested the electrostatic interaction between cytochrome c and the siuface of the 

promoter-modified metal electrode may play an important role in the electrochemical 

response [15-18]. The relationship between cytochrome c purity and its electrochemistry 

was first reported by Bowden et al. [19]. Recentiy, Taniguchi et al. [20] and Daido et al. 

[21] found that irreversible adsoiption of the deaminated and oligomeric components in 

cytochrome c samples from commercial sources on the electrode surface is responsible for 
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the irreversible electrochemical reaction of cytochrome c. 

The results of this investigation demonstrated that thiophene. carbazole and 

pyridine are effective promoters. They all have only one functional group, >S, >NH, >N 

respectively, through which the promoter molecules are adsorbed on the electrode surface. 

Thus, it appears that at least one class of promoters does not require a structure with two 

functional groups and it is not necessary for accelerating the electrochemical reaction of 

cytochrome c that the promoter molecules interact with cytochrome c molecules through 

hydrogen bonding or salt bridging to form an electron transfer pathway between electrode 

and cytochrome c [6,7]. Therefore, the crucial role of the promoters may be to prevent 

denaturation and/or irreversible adsorption of cytochrome c or the deaminated and 

oligomeric components, which results in ineversible electrochemistry. The electrostatic 

interaction between cytochrome c and electrode surface may also be important The 

surface modification of the metal electrodes with promoter may change the charge on the 

electrode surface. The shift in the open circuit potential after surface modification of the 

electrode with thiophene is evidence for a more negative charge on the electrode surface 

after modiflcation which favors the reversible electron transfer between cytochrome c and 

the electrode [IS]. 

When the film transfer method is used to study the direct electrochemistry of 

cytochrome c at a promoter-modiHed metal electrode a dipping time of a few minutes is 

is commonly used for surface modification of the electrode [4-6]. The dependence of the 

AEp on the dipping time was first reported by our group [8]. Dipping times as long as 10 

h are requued to observe the effective promoter effects of 2,2*-bipyridine and pyrazine 
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which are weakly adsorbed on the gold surface. In this study, it was shown &at the 

dependence of the af^ on the dipping time was also observed for thiophene, carbazole and 

pyridine. The intensity of the Sjp peak in the XPS spectra of thiophene adsorbed on the 

gold surface increases with increasing dipping time, indicating that the amount of the 

promoter molecules adsorbed also increases. In turn, AEp is dependent on the amount of 

promoter molecules adsorbed on the electrode surface. One possible reason is that the 

more promoter molecules adsorbed on the electrode surface, the less the bare electrode 

surface and the better the prevention of the denaturation and/or irreversible adsorption of 

cytochrome c. Thus, it is better to use a prolonged dipping time in the modiflcation 

procedure for evaluation of the promoter ability of compounds. 

In previous studies [3-6], two methods were used to evaluate the promoter ability 

of a compound. In one method, the electrochemical measurement is carried out in the 

cytochrome c solution containing the promoter to be tested. The second method, the film 

transfer method, was used in this work. It should be noted that when the film transfer 

method is used to evaluate the promoter ability of compounds, there are two types of 

promoters. For the first type of promoters, such as thiophene, whose molecules can be 

strongly adsorbed on the gold surface, a dipping time of about 1 h is sufficient to observe 

the optimum promoter effect and the performance of the thiophene-modified gold electrode 

is very stable. For the second type, such as 2,2'-bipyridine, pyrazine [8], carbazole and 

pyridine, which are weakly adsorbed on the electrode surface, dipping times as long as 10 

h are required to observe their optimum promotion effect. In addition, the performance 

of the modified electrodes is not stable because the weakly adsorbed promoter molecules 
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are gradually replaced by cytochrome c molecules from solution. Once cytochrome c 

molecules are directly adsorbed on the electrode surface, they undergo denaturation and 

block electron transfer widi the cytochrome c molecules in solution and the CV response 

declines rapidly. 

Conclusions 

Molecules with one functional group, such as pyridine, carbazole and thiophene can 

also accelerate the electrochemical reaction of cytochrome c. However, their effectiveness 

as promoter is somewhat different because of their different adsorption strengths on the 

surface of the gold electrode. The behavior of the different promoters with one functional 

group indicates that an important requirement for an effective promoter is that it interacts 

with the electrode surface. The crucial role of these three promoters may be to prevent 

denaturation and/or irreversible adsorption of cytochrome c or the deaminated and 

oligomeric components, which results in irreversible electrochemistry. 
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CHAPTER 3. ELECTROCHEMICAL AND SURFACE-ENHANCED RESONANCE 

RAMAN BEHAVIOR OF CYTOCHROME C AT IODIDE-MODIFIED ELECTRODES 

Introduction 

Cytochrome c. an electron carrier between the cytochronie c reductase and 

cytochrome c oxidase, is widely distributed in living organisms. Its physiological redox 

partners are bound to the inner membrane of mitochondria, whereas cytochrome c itself 

resides in the cytosol between the inner and outer membranes [1] and is subject to very 

high electric fields (10^-10^ V/m) near the surface of the membrane [2]. A field of similar 

magnitude exists at an electrode/solution interface and, consequendy the electrochemical 

behavior of cytochrome c is of considerable interest However, early studies have shown 

that the electrochemical reactions of cytochrome c at metal electrodes, such as Hg, Pt, Au, 

Ag etc., are irreversible and sometimes not detectable [3] despite the fact that cytochrome 

c is readily oxidized or reduced by chemical reagents, (e.g. NaN02. NajSO, etc.). For this 

reason mediators were often enfq)loyed in electrochemical studies of cytochrome c. In 

1977 quasi-reversible, direct electron transfer was observed between cytochrome c and tin 

oxide electrodes [4] and at 4,4'-bipyridine-modified electrodes [5]. In the latter system, 

4,4'-bipyridine was termed a "promoter" of the electron transfer process because it is not 

redox active within the potential range used to reduce or oxidize cytochrome c. 

Following the initial observations of Hill and coworkers, an extensive research 

effort has been devoted to the study of the direct electrochemical reaction between 

cytochrome c and promoter-modified electrodes [5-31]. To date, most of the promoters 

that have been studied are organic compounds such as 4,4'-bipyridine [5], l,2-bis-(4-



www.manaraa.com

58 

pyridyl)ethylene [5], bis-(4-pyridyl)disulfide [12] and purine [16]. Only a few inorganic 

promoters, such as S and As adatoms [26] and heteropolytungstates [30] have been 

reported. Gold electrodes were used most often in these studies, but quasi-reversible 

electron transfer behavior between cytochrome c and other promoter-modified metal 

electrodes, such as Pt [9] and Ag [14] etc. has also been reported. With respect to other 

biological compounds. Lane and Hubbard [32] reported a study of the electrochemical 

behavior of catecholamines which showed that modification of Pt electrodes with iodide 

ion produces a surface which is inert with respect to electrochemical and chemical 

interference over the potential range of interest Adsorbed iodide prevented the formation 

of surface oxides on the Pt as well as adsorption of biological compounds. Detection of 

the dopamine was possible at the iodide modified electrode, whereas no current was 

discernible at bare Pt owing to the high background current as well as the irreversible 

nature of the electron transfer process. 

The mechanism for the heterogeneous electron-transfer process between cytochrome 

c and promoter-modified electrodes is not well understood. It has been shown that 

cytochrome c is structurally altered (i.e. unfolded or flattened) when adsorbed directiy on 

metal electrodes and under these conditions it undergoes irreversible electron transfer [33-

36]. It may be that promoters somehow prevent structural changes in cytochrome at the 

electrode surface. The majority of promoters studied so far are bifunctional. One 

functional group binds to the electrode surface and the second is believed to interact with 

lysine-NHj* groups of cytochrome c through hydrogen bonding or salt bridging [17,21,25]. 

When bound to the promoter-modified electrodes cytochrome c maintains its native 
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stnicture and undergoes quasi-reversible electron transfer [35]. Niki and cowoiicers [35] 

have shown that three types of interactions can occur between cytochrome c and organic 

modifiers. Also bifiinctionaliQr is not mandatory, as shown by our recent studies of 

monofiinctional compounds which are effective promoters [36-38]. 

Hawkridge and coworkers have made extensive investigations of cytochrome c 

electrochemistry [39-42]. They found that after purification of cytochromc c and in the 

absence of lyophilization, a quasi-reversible electron transfer process can be observed at 

bare metal electrodes [40,41]. These authors suggested that the lyophilization process 

produces small amounts of oligomeric and polymerized cytochrome c and that these forms 

adsorb strongly onto the metal electrode surfaces. Electron transfer between bulk 

cytochrome c in solution and the electrode is irreversible under these conditions [40]. The 

heterogeneous electron transfer rates for small metalloproteins, such as cytochrome Cj,, 

[41] are greater than those for larger metalloproteins such as cytochrome c. Thus, it was 

concluded that the size of the biological molecule (i.e. the distance of closest approach 

between the heme edge and the electrode surface) controls the rates of the heterogeneous 

electron transfer of biological molecules at electrode surfaces [40-42]. 

Electrostatic interaction between cytochrome c and its redox parmers are known 

to play an important role in homogeneous electron transfer reactions [43,44]. Several 

studies have emphasized similar electrostatic interactions between the metalloprotein and 

the electrode surface [45-47]. Surface-enhanced resonance Raman scattering (SERRS) 

studies of cytochrome c also provide support for protein adsorption on silver electrodes 

[48,49]. Moreover, Hildebrandt and Stockburger have shown that the spin state marker 
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bands in the SERRS spectra are sensitive to structural perturbations resulting from the 

interaction of the protein with the metal [49]. The high spin form of the protein was 

found to exhibit a more negative redox potential than the low spin form (-0.35 V versus 

0.0 V). It was proposed that the orientation of the protein at the electrode surface changed 

with the adsorption potential as a result of electrostatic interactions between the charged 

amino acid groups on the surface of the protein and the electrode. 

In the present study, it is shown that quasi-reversible, direct electron transfer occurs 

between cytochrome c and an iodide-modified gold electrode or between cytochrome c in 

an iodide-containing solution and a bare gold electrode. Direct evidence for adsorption 

of the protein on an iodide-modified Ag electrode was obtained from SERRS. These 

results support the role of electrostatic interactions in the electrochemistry of cytochrome 

c. A mechanism for the electrochemical reaction of cytochrome c at the iodide-modified 

electrode is proposed. 

Experimental 

Horse heart cytochrome c (type VI, Sigma Chemical Co.) was used without further 

purification. All other chemicals were reagent grade. 

A BAS 1(X) electrochemical analyzer and conventional three-electrode 

electrochemical cell were used for the electrochemical measurements. The working 

electrode was constructed from a gold rod which was sealed into glass tubing with Torr 

seal (Varian). The exposed area was approximately 5.0 mm^. A Pt wire was used as the 

auxiliary electrode. A saturated calomel electrode (SCE) served as the reference electrode 

and all the potentials are reported with respect to the SCE. 
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The modified electrodes were prepared by the following procedure. The working 

electrode was sequentially polished with S, 0.3, O.OS ^m alumina/water slurries until a 

shiny, mirrorlike finish was obtained. The electrode was then sonicated in deionized 

water and washed thoroughly with deionized water. Surfacc modification of the gold 

electrode was carried out by dipping the freshly polished gold electrode into 0.1 M KI 

solution for two minutes, followed by rinsing twice with deionized water. 

The electrochemical studies of cytochrome c were carried out at a freshly polished 

gold electrode in the 0.38 mM cytochrome c solution with KI or at the iodide-modified 

gold electrode in 0.38 mM cytochrome c solution without KI. The electrolyte solution 

contained 0.025 M phosphate buffer at pH 7.0 and 0.1 M sodium perchlorate. Oxygen 

was purged from solution by bubbling with nitrogen for 10 minutes prior to the 

electrochemical measurements. 

Surface-enhanced resonance Raman scattering (SERRS) spectra were obtained from 

cytochrome c adsorbed on a roughened Ag electrode. The electrode was constructed from 

Ag wire and roughened by a double-potential-step oxidation-reduction cycle (ORG) as 

described previously [13]. Following the ORG, the electrode was dipped into a 

cytochrome c solution for IS minutes. The electrode was removed, excess solution was 

shaken from its surface and it was placed in 0.025 M phosphate buffer solution (pH 7.0). 

In the case of the iodide modification, the roughened Ag electrode was dipped into 0.1 M 

KI for 2 minutes, removed from the solution and rinsed with deionized water. 

Gytochrome c was then adsorbed as described above for the bare Ag electrode. The 

SERRS spectra were recorded at room temperature. The 413.1 nm line of a Kr* laser was 
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used as the excitation wavelength and the power was 1 mW at the san^le. The scattered 

light was collected in a backscattering geometry and focussed on the slit of a 

monochromator/spectrograph (Spex Triplemate 1377) equipped widi 1200 lines/mm 

grating. The detector was an intensified diode array (model 1420, OMA HI, EG&G Inc.). 

Results 

Cytochrome c does not undeigo reversible electron transfer at a freshly polished 

gold electrode (Figure 1(a)). In contrast, a well-defined peak was obtained at an iodide-

modified electrode (Figure 1(b)). The cuirent is entirely due to cytochrome c; iodide 

anions exhibit no electrochemical response in the potential range firom -0.2 V to +0.2 V. 

The separation between the cathodic and anodic peak potentials is about 70 mV, which 

is larger than that for a fully reversible one-electron transfer reaction. The cathodic peak 

current is almost the same as the anodic peak current The midpoint between the cathodic 

and anodic peak potentials is approximately 0.01 V, which is close to the fomial potential 

of cytochrome c [SO]. The cathodic and anodic peak currents are proportional to the 

square root of the scan rate in the range 10-500 mV/s (Figure 2), showing that the reaction 

is diffusion-controlled. 

From the slope of the plot of the cathodic peak current ip versus the square root of 

the scan rate, v"^, the calculated diffusion coefficient of cytochrome c is 1.09 x 10"® cm^ 

s"' which is in good agreement with that obtained at 4,4'-bipyridine- [5] or bis(4-

pyridyl)disulfide- [12] modified gold electrodes. Using Nicholson's method [51], the 

heterogeneous electron transfer rate constant, k,, was determined to be ca. 6.2 x 10"' cm 

s"' from the scan rate dependence of the peak separation. This value is larger than that 
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Figure 1. Cyclic voltammograms of 0.38 mM cytochrome c at (a) a freshly polished 
gold electrode, (b) an iodide anion-modified gold electrode in phosphate 
buffer solution (pH 6.97) with 0.1 M Naa04. Scan rate, 50 mV/s; initial 
potential, 40.20 V. 
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Figure 2. Cyclic voltammograms of 0.38 mM cytochrome c at an iodide-modified 
gold electrode in phosphate buffer solution 6.97) with 0.1 M NaClQ^. 
Scan rates: (a) 10, (b) 25, (c) 50, (d) 100, (e) 200, (f) 500 mV/s. The initial 
potential was +0.20 V. 
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obtained at a purine-modified gold electrode (1 x 10'̂  cm s*') [16], but less than that 

obtained at 4,4*-bipyiidine-modified gold electrodes ((1.4-1.9) x 10"^ cm s ') [7]. 

All of the above characterisdcs are indicative of a quasi-reversible direct electron 

transfer reaction between cytochrome c and the iodide-modified gold electrode. Moreover, 

the performance of the iodide-modiOed gold electrode was veiy stable. After few days, 

the cyclic voltammetric response was almost the same as that observed initially. 

The electrochemical behavior of cytochrome c was also studied at a freshly 

polished gold electrode in a cytochrome c solution containing varying concentrations of 

KI. The cyclic voltammograms were measured immediately after placing the freshly 

polished bare gold electrode into the cytochrome c solution. It was found that, under these 

conditions, the initial response depended upon the KI concentration in the cytochrome c 

solution. Curves a, b and c in Figure 3 show the response at a freshly polished gold 

electrode for cytochrome solutions containing KI concentrations of 3.8 x 10^ M, 7.2 x 10"^ 

M and 3.8 x 10'̂  M, respectively. It can be seen from Figure 3 that the peak current 

increases and peak separation decreases with increasing KI concentration. Figure 4 shows 

the relationship between the peak separation and a series of KI concentrations. The peak 

separation decreases sharply to a limiting value with increasing KI concentration. It was 

also noted that at low KI concentrations the peak separation decreased with time. For 

example. In the case of a 0.1 mM KI solution, the peak separation stabilized after 

approximately 1 hour, whereas in 1 mM KI solution, only 15 min was required. At the 

highest KI concentrations (10 mM) the peak separation reached a stable value within the 

time required to record a cyclic voltanunogram. The peak current also increased with 
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Figure 3. Cyclic voltammograms of 0.38 mM cytochrome c at a freshly polished gold 
electrode in phosphate buffer solution (pH 6.97) containing 0.1 M NaQ04 
and (a) 0.38, (b) 0.76, and (c) 3.8 mM KI. Scan rale, 50 mV/s; initial 
potential, +0.20 V, 
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Figure 4. Plot of the peak separation AEp as a function of the KI concentrations. 
Experiment^ conditions were the same as in Figure 3. 
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addition of KI, as shown in Figure 3. These results suggest that the iodide ion is adsorbed 

from solution onto the electrode surface and forms a stable modified electrode in the 

presence of cytochrome c. Any cytochrome c that is initially adsorbed is displaced by the 

iodide ion which is irreversibly adsorbed. The higher the iodide concentradon, the more 

rapidly the cytochrome is displaced. In the absence of cytochrome c, the time required 

for adsorpdon of iodide from solution is also concentration dependent 

Surface-enhanced resonance Raman scattering was used to determine the 

conformations and redox properties of cytochrome c adsorbed on iodide-modiHed 

electrodes. In order to obtain surface enhancement on Au substrates it is necessary to 

excite at wavelengths near 600 nm. At this wavelength cytochrome c is not resonantly 

enhanced, however, and both resonance and surface enhancement are necessary to obtain 

sufficient scattering intensity from cytochrome c at the iodide modified electrode. For this 

reason, a silver electrode was used because both strong lesonance and surface enhancement 

occur at 413 nm. The electrochemical response of cytochrome c at iodide-modified Ag 

electrodes was similar to that on iodide-modified Au electrodes, although the modification 

was not as stable as in the case of gold. A comparison of the SERRS spectra of 

cytochrome c adsorbed on the bare Ag electrode with those obtained on the iodide-

modifled Ag electrode demonstrates that the heme environment in the case of the latter 

more nearly resembles that of the native protein in solution. The position of the oxidation 

state sensitive band at 1372 cm ' indicates that cytochrome adsorbed on the bare Ag 

electrode is in the oxidized state at the open circuit potential (data not shown). The 

spectra of cytochrome c adsorbed on a roughened Ag electrode at several potentials are 
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displayed in Figure 5. In the top specmim (- 400 mV) the spin state maiker band is spUt 

into two approximately equal bandi at 1495 and 1474 cm' indicating that the heme group 

of the adsorbed protein is present as a mixture of five- and six-coordinate species. The 

adsorption interactions of tfie protein with the unmodified Ag surfacc lead to perturbation 

of the nomud heme structure (six-coordinate, low spin), as noted in previous SERRS 

studies of cytochrome c [49,52]. These structural changes arc also reflected in the redox 

potential of the protein. The band at 1365 cm'*, the oxidation state marker band, is 

characteristic of the fully reduced heme and it shifts to 1377 cm ' in the oxidized species. 

As can be seen from the changes in the oxidation state marker band, both the ferrous and 

ferric forms are present at -300 and -200 mV, indicating that the reduction potential is 

more negative than - 200 mV. The effect of potential on the frequency of the oxidation 

state marker band is plotted in Figure 7A. Although this curve is sigmoidal in 

appearance, it is quite broad and does not show a sharp change near the midpoint as 

expected from potentiometric measurements. This suggests that a mixture of species is 

present on the electrode surface in agreement with the SERRS results, as determined fiom 

the spin state marker band. An approximate value for the average reduction potential is -

0.25 V vs SCE as obtained from the midpoint of this curve. This is considerably more 

negative than the solution value, +0.01 V vs SCE [50], for cytochrome c as measured by 

potentiometry. The negative shift indicates that the oxidized form of the cytochrome c 

is more stable in the adsorbed state and is characteristic of structural perturbations leading 

to a greater exposure of the heme group to the aqueous environment. 

Figure 6 illustrates the changes observed in the SERRS spectrum of cytochrome 
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Figure 5. SERRS spectra of cytochrome c on a Ag electrode as a function of 
electrode potential: A) -400 mV; B) -300 mV; C) -200 mV and D) +80 mV. 
Experimental conditions were as follows: laser excitation wavelength = 
413.1 nm; laser power = 1 mW; exposure time = 8 s/scan; number of scans 
accumulated = 20. 
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Figtire 6. SERRS spectra of cytochrome c on an iodide-modified Ag electrode as a 
function of electrode potential: A) -400 mV; B) -200 mV; C) -50 mV and 
D) 0 mV. Experimental conditions were the same as in Figure S. 
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Figure 7. Variation in the position of the oxidation state marker band in the SERRS 
spectrum of cytochrome c as a function of the electrode potential. Figure 
A is for cytochrome c on a bare Ag electrode. Figure B is for cytochrome 
c on an iodide-modiHed Ag electrode. 
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c adsorbed on an iodide-modified Ag electrode. It should be emphasized that these spectra 

are from adsorbed cytochrome c only-no cytochrome c is present in the solution. At open 

circuit potential, the cytochrome c at iodide-modified Ag electrode is reduced (data not 

shown). Reduction of the cytochrome can be attributed to the shift in the rest potential 

of the iodide-modified Ag electrode from -fO.OS V to -0.04 V, as determined 

experimentally. The first point to note in Figiue 6 is that the spin state marker band is at 

1495 cm ' which is characteristic of the six-coordinae low spin fonn of the heme. The 

oxidation state marker band at 1367 cm ' is shifted to 1377 cm ' at 0 mV. At -200 mV, 

no evidence for the oxidized form can be seen, whereas a splitting is observed at -SO mV 

with the maximum at 1375 cm ' and a shoulder at 1367 cm '. A fiill plot of the oxidation 

state marker band position as a function of potential is shown in Figure 7 B. In contrast 

to the curve shown for cytochrome c on a bare Ag electrode, this curve exhibits a sharp 

transition near the midpoint potential. A value of -0.05 V is obtained for the reduction 

potential. This value is very close to the electrochemical value obtained at the iodide-

modified electrode by cyclic voltammetry, although it is somewhat negative relative to the 

solution value. Small negative shifts have been observed for cytochrome c adsorbed on 

InjOj [36] and SnOz electrodes [37). Similar shifts are also seen when cytochrome c 

interacts with biological components (mitochondrial membranes 50-60 mV) [53]. It can 

be concluded that the SERRS results indicate that the adsorbed cytochrome c is 

structurally similar to the native protein in solution. The spectrum decreases in intensity 

with repeated potential changes and this probably results from gradual desoiption of the 

protein. 
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A second important point concerning Figure 6 is that the additional enhancement 

due to the resonance effect at 413.1 nm excitation is in^rtant for detecting the SERRS 

spectrum. The contribution of long range electromagnetic enhancement is apparent from 

the fact that only extremely weak spectra were observed at a roughened Au electrode with 

413.1 nm excitation. Because the Au plasmon resonance is at longer wavelengths (> 600 

nm), no surface enhancement is expected at this excitation wavelength. On the other hand, 

when 647.1 nm excitation was used with the Au electrode, the spectra were once again 

very weak because of lack of resonance enhancement at this wavelength. In summary, 

both resonance and surface enhancement are required to detect SERRS from cytochrome 

c adsorbed at modified electrodes. 

Discussion 

The above results show that adsorption of a simple anion, such as iodide, at a gold 

electrode can accelerate the heterogeneous electron transfer process between cytochrome 

c and a gold electrode. The electrostatic interaction between cytochrome c and the 

electrode surface appears to play a role in its electrochemical response. The sign and 

magnitude of the excess charge density at a metal electrode surface depends on the 

electrode potential with respect to the potential of zero charge (pzc) and the differential 

capacitance. The pzc for a gold electrode in the absence of speciHc ion adsorption is near 

+0.06 V [54] which is slightiy more negative than that of the rest potential of the gold 

electrode in cytochrome c solution (+0.09 V). Therefore, a slight excess positive charge 

exists at the gold electrode surface at the rest potential. It has been reported [55,56] that 

iodide anions adsorb strongly and irreversibly on the gold surface. The forces responsible 
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for the strong interaction involve not only the simple coulombic attraction, but also 

covalent bonding between the iodide anion and the electrode surfacc, as shown by the 

SERS investigation of Gao and Weaver [56]. In our experiments, the iodide-modified gold 

surface is negatively charged at the rest potential (-0.05 V. as verified by direct 

measurement). 

The possibility that iodide ions are adsorbed to specific sites on die cytochrome 

surface and that this is responsible for the enhanced electron transfer kinetics should also 

be considered. It is known that cytochromes bind a number of different anions and the 

ion binding properties vary widely with species [57]. Ion binding has been shown to have 

an effect on the redox potential of cytochromes from different species and the shift in 

potential has been analyzed in term of the binding constants [58]. Assuming that iodide 

also binds to the protein, it is conceivable that this could influence the protein interaction 

with the electrode surface and, hence, the electron transfer kinetics. However, 

experimental evidence suggests that the direct interaction of the iodide ion with the 

electrode surface may play a more important role. Ex situ modification of the electrode 

results in a stable surface which, when transferred to an iodide-free solution of cytochrome 

c, exhibits quasi-reversible electron transfer kinetics. Under these conditions, it is not 

likely that the iodide ion desorbs from the electrode and associates with the cytochrome 

in solution to an appreciable extent based upon the previous results of Gao and Weaver 

[56]. These authors have shown that iodide ion remained bound to Au throughout the 

potential range from +100 to -900 mV. 

A consideration of the structure of cytochrome c suggests the possible interactions 
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that may occur between the amino acid groups on its surface and a charged electrode. 

Cytochrome c is a highly ionic protein with a net charge of +9 in die oxidized state at pH 

7.5. Most of the positively charged residues arc on the left front of the protein surface. 

On the other hand, nearly all the negatively charged residues are located in the small area 

on the back surface of cytochrome c. This results in a large dipole moment (312 and 300 

debye for the oxidized and reduced forms, respectively). The dipole axis through the 

positive and negative centers crosses the cytochrome c surface at phenylalanine-82 (front 

surface) and asparagine-103 (back surface), respectively. The angle between the heme 

plane and the dipole axis of cytochrome c is 33 degrees. Phenylalanine-82 is thus located 

near the solvent-accessible heme edge [59,60], The heme group sits in a crevice 

surrounded by the polypeptide chain of 104 amino acids. The plane of the heme is 

approximately peipendicular to the molecular surface. The solvent-exposed surface 

corresponds to a veiy small proportion (0.6%) of the total molecular surface and the heme 

edge in the crevice is located approximately 0.3 nm below the molecular surface [61]. 

This region of the protein surface is surrounded by positively charged lysines and 

constitutes an electron-transfer domain for interaction with cytochrome c oxidase or 

reductase [62]. Both of these mitochondrial reaction partners of cytochrome c are 

negatively charged, so that the molecules are electrostatically oriented as they approach 

one other. Every collision is productive and the electron transfer rates between 

cytochrome c and its physiological reactants are close to diffusion-controlled even though 

the surface area of the heme edge is only 0.6% of the total surface of cytochrome c [63]. 

Based upon the above properties of cytochrome c, a mechanism for the 
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electrochemical reaction at gold electrode can be proposed. In the case of a ^hly 

polished gold electrode, the surface charge is positive. The cytochrome molecules will 

tend to orient with the negatively chaiged back surface proximal to the electrode surface 

and the positively charged surface near the heme crevice distal to the electrode surface. 

In the extreme case, the cytochrome interacts at the negatively charged patch of amino 

acids and the heme is quite distant from the electrode surface, as depicted in Figure 8A. 

Under these conditions efficient electron transfer to the heme is prevented. When the gold 

electrode is modiHed with iodide, the surface becomes negatively charged. Cytochrome 

c is adsorbed with the positively charged region of the protein surface closest to the 

electrode (Figure 8B). The heme group is proximal to the electrode surface and quasi-

reversible electron transfer is observed. 

The SERRS results support this interpretation. In the presence of adsorbed iodide 

ion, the heme exists in the normal low spin, six-coordinate state, whereas at the bare Ag 

electrode both high spin, five-coordinate and low spin, six-coordinate forms are present 

Adsorbed cytochrome is in the oxidized state at bare Ag, as indicated by the position of 

the oxidation state marker band. It is reduced at the iodide-modifled electrode because of 

the shift in the rest potential from +0.08 V to -0.04 V. This latter fact also indicates that 

the E® value of cytochrome at the iodide-modifled electrode is closer to that of the protein 

in solution. It is known from previous potential dependent SERRS studies of cytochrome 

c at bare Ag electrodes that the redox potential is shifted by ca. -400 mV due to changes 

in the hydrophobicity of the heme environment and alterations of the protein structure near 

the heme [49]. Thus, it is apparent that in the presence of iodide these parameters are not 
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Figure 8. Schematic presentation of the orientation of cytochrome c adsorbed on a 
gold electr^e surface in (A) the absence and (B) the presence of iodide 
anions. The large circles represent cytochrome c molecules; + and - signs 
in the circles represent the positive and negative centers of the dipole 
moment of cytochrome c; the line within the circle represents the heme 
plane. 
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affected to any significant extent 

These results are also in agreement with Ae model proposed by Hildebrandt and 

Stockburger [49] based upon their observation of two different cytochrome conformers. 

When cytochrome c was adsorbed at negative potentials (< -0.2 V vs. SCE) the heme was 

in the normal six-coordinate, low spin state, whereas when it was adsorbed at more 

positive potentials (> -0.2 V), the heme was in the five-coordinate, high spin state. They 

proposed that cytochrome c is attached to the metal via different groups of amino acids 

in the two conformers. In state II the electrostatic interactions are sufficiendy strong to 

modify the coordination shell of the heme iron, whereas in state I, the interactions are 

much weaker and the heme is maintained in its normal coordination and spin state. These 

authors also noted an increase in the sbc-coordinate, low spin form in state n in the 

presence of CI'. 

Albery et al. [8] have studied the kinetics of the electron transfer reaction of 

cytochrome c at a 4,4'-bipyiidine-modified gold electrode. They concluded that rapid 

adsorption and desorption of cytochrome c is necessary for fast electron transfer. 

Consideration of the anion binding properties of cytochrome c in solution may provide 

some insight regarding its adsorption and desorption behavior at the iodide-modified 

electrode. Two factors must be considered: the number of ions bound as a function of 

redox state and the strength of ion binding. In one study the anion binding behavior was 

shown to be species dependent Horse heart and bovine cytochrome were found to bind 

two chloride ions in the ferri form and three in the ferro form, whereas in the case of tuna 

cytochrome the situation was reversed [571. However, the binding strength for chloride 
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was greater for the oxidized form than for the reduced. In another study, it was concluded 

that certain anionic (i.e. those which are impermeable to the mitochondrial membrane) bind 

more strongly to the oxidized form of cytochromc c than to the reduced form, based upon 

electrophoretic mobilities of cytochrome c [56]. It may be that at an electrode surface 

specific binding sites on cytochrome c interact directly with the surface-adsorbed iodide 

and its adsoiption/desoiption behavior is affected by the changes in binding strength with 

redox state. Further experiments are needed to detemune these parameters. However, the 

SERRS data obtained for cytochrome c on iodide-nxxlified Ag electrodes do indicate that 

oxidized cytochrome c molecules are adsorbed more strongly than the reduced species. 

The SERRS spectrum of adsorbed cytochrome c was stable with time at positive 

potentials, whereas the signal decreased with cycling of the potential to negative potentials 

or when the potential was maintained at sufficiently negative values to reduce cytochrome 

c. 

Conclusions 

Quasi-reversible and direct electron transfer was observed between an iodide-

modified gold electrode and cytochrome c, as well as between cytochrome c in an iodide-

containing solution and a bare gold electrode. The results suggest that an electrostatic 

interaction between cytochrome c and the iodide-modified electrode surface plays an 

important role in the electrochemical response. Results obtained by surface enhanced 

resonance Raman scattering (SERRS) spectroscopy indicate that the heme group of the 

adsorbed cytochrome c is in the native low spin, six-coordinate configuration at the iodide-

modiHed Ag electrode, whereas at the bare Ag electrode a mixture of both low spin, six-
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coordinate and high spin, five-coordinate heme is present on the surface. A possible 

mechanism for the role of iodide as a promoter of cytochrome c electrochemistiy is that 

the adsorbed iodide ions on the electrode surface change the surface charge of the 

electrode which leads to a favorable orientation of cytochrome c at the electrode surface 

for the electron transfer reactions. 
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CHAPTER 4. RESONANCE RAMAN AND SURFACE-ENHANCED RESONANCE 

RAMAN SPECTROSCOPIC AND ELECTROCHEMICAL STUDY OF 

CYTOCHROME C MUTANTS 

A p^)er to be sulnnitted to Biospectroscopy 

Chengli Zhou, Emanual Margoliash and Therese M. Cotton 

Abstract 

Rat wild-type cytochrome c (WT) and its mutants, Tyr67Phe, Thr78Val, AsnS2Ile, 

AspSOArg, and His26Val were studied by cyclic voltammetiy (CV), resonance Raman 

(RR), and surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Both 

SERRS and CV results show that most of the cytochrome c mutants behave similarly to 

the wild-type cytochrome c at electrodes in tenn of reversibility except for the His26Val 

mutant However, the so-called "water mutants" Tyr67Hie, Thr78Val, and AsnS2ne have 

much lower redox potentials than that of the wild-type cytochrome c which indicates that 

these mutations increase the stability of the protein. The resonance Raman spectra of the 

water mutants also show considerable differences firom the wild-type, especially in the low 

frequency region which indicates structural changes in the heme/protein interactions. The 

surface-enhanced resonance Raman results indicate that the heme group of the adsorbed 

cytochrome c and its mutants are in the six-coordinate low spin (6cLS) configuration at 

bis(4-pyridyl) disulfide-modifled-silver electrodes, whereas mixtures of both 6cLS and 

nve-coordinate high spin (5cHS) heme configurations are present at bare silver electrodes. 

The structural basis for these results are discussed. 
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Introduction 

Protein electiochemistiy is a subject of great interest and has been extensively 

developed in recent years [1-9] due to the fact that there are some analogies between the 

electrode reaction of proteins and their biological electron transfer reaction. Such studies 

can yield important information not only about themfiodynamic, kinetic and structural 

properties of proteins, but also provide novel insights into the electron transfer mechanism 

of proteins in vivo. Mitochondrial cytochrome c is one of the most extensively studied 

proteins because it plays important role in energy transduction and it is relatively stable 

under in vitro conditions. Its structural and chemical reactivity are well-characterized, and 

it provides a paradigm for other globular proteins [10]. Many studies have been focused 

on developing and understanding the structure/function relationships in redox proteins 

[2,4]. Evidence as to the role of specific amino acids has been gleaned from correlation 

of extensive data obtained from high resolution crystallography, 2-D-Nosey nmr 

spectroscopy and amino acid analysis of eukaryotic cytochromes [11,12]. Extensive studies 

of cytochromes labeled with redox active species have established that the intramolecular 

electron transfer kinetics are affected by the amino acid pathway [13,14]. It is also well-

known that the redox potential of the heme is influenced strongly by the nature of the 

axial ligand to iron in heme-containing proteins, as well as the hydrophobicity of the heme 

environment [15,16]. Recently, site-directed mutagenesis of invariant amino acids near 

the heme, but not directly ligated to it, have established that these substitutions can have 

considerable effect on the protein stability [10]. 

Resonance Raman spectroscopy is a useful technique for characterization of the 



www.manaraa.com

88 

structural features of proteins. It can be used to identify the presence or absence of 

particular structural and ligation interactions of the amino acids [17]. Therefore, it is veiy 

powerful method for correlating structure and fiuiction. It is also an extremely sensitive 

technique for selectively probing the heme moiety of cytochromes. Vibrational modes 

have been assigned that are sensitive to the oxidation and spin state of the heme iron, as 

well as to distortions in the heme imposed by the surrounding protein [18]. Surface-

enhanced resonance Raman spectroscopy provides addition information conceming the 

stability, redox potential, and configuration of the protein on an electrode surface [19]. 

In the present study, several cytochrome c mutants have been characterized by 

cyclic voltammetry, RR and SERRS in order to determine how the mutations affect the 

redox potential, electron transfer kinetics and the stability of cytochrome c. 

Experimental 

The procedures for preparing the mutant cytochromes have been described 

previously [10]. Bis(4-pyridyl) disulfide (4-PyS)>98% purity was purchased from Aldrich 

Chemical Co. and was used as received. All other chemicals were reagent grade without 

further purification. The electrochemical measurements were carried out in a conventional 

three-electrode electrochemical cell using a BAS 100 electrochemical analyzer 

(Bioanalytical Systems). The working electrode were constructed from a flattened gold 

or silver rod which was sealed into glass tube using Torr Seal (Varian Co.). A Pt wire 

was used as the auxiliary electrode. A saturated calomel electrode (SCE) served as a 

reference electrode and all the potentials are reported with respect to the SCE. The 

working electrodes were sequentially polished with 5.0, 0.3, 0.05 pm alumina slurries in 
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water. The electrodes were sonicated in distilled water following each step of the 

polishing procedure. Modification of the surface was achieved by dipping the electrode 

into a 1 mM solution of 4-PyS for 10 minutes, followed by rinsing with distilled water and 

immersion into the electrochemical cell containing KT* M cytochrome c solution, 10 mM 

potassium phosphate buffer (pH 7) and O.S M KCl for subsequent electrochemical 

measurements. 

For the SERRS measurements, after polishing, the silver electrode was roughened 

in 0.1 NajSQf by stepping the potential firom -O.SS V to -tO.S5 V, where 2SmC/cm^ charge 

was allowed to pass, and then stepping back to -0.SS V to reduce the Ag^. The electrode 

was then nnodified by the procedure described above for the electrochemical 

measurements. The SERRS studies at modified silver electrodes were accomplished by 

adsorbing the cytochrome c from 0.1 mM solution for 15 minutes, rinsing the excess 

solution from the electrode with buffer and immersing the electrode into 10 mM potassium 

phosphate buffer 7) containing O.S M KCl as the electrolyte. 

The RR and SERRS spectra were obtained by excitation with the 413 nm line of 

a Kr* laser. A backscattering geometry was used for collecting the scattered light The 

Raman instramentation has been described previously [20], This includes a Triplemate 

1377 spectrometer and a Princeton Instrument CCD detector (model LN1152) cooled to 

-120°. Typically, the RR and SERRS data were acquired with ca. 1 mW of power and a 

total acquisition time of less than 2 minutes. Indene was used to calibrate the Raman 

frequencies. 
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Results and Discussion 

The molecular structure of cytochrome c is illustrated in Hgure 1 [21]. The 

mutants examined in this study are marked in Figure 1 including the following: Tyrosine 

67 taken to phenylalanine (Tyi67Phe), asparagine 52 taken to isoleucine (AsnS2ne), 

threonine 78 taken to valine (Thr78Val), aspartate SO taken to aipnine (AspSOArg), and 

histidine 26 taken to valine (His26Val). Figure 2 shows the CV response for cytochrome 

c Tyr67Phe mutant at a 4-PyS-modified gold electrode at different scan rates. A plot of 

the peak current for both the cathodic and anodic peaks shows a linear increase as a 

function of the square root of die scan rate. The same behavior was observed for wild-

type cytochrome c and all of the other mutants, demonstrating that the electrochemical 

reaction at 4-PyS-modified gold electrode is diffusion-controlled. The electrochemical 

results are sunrunarized in Table 1. From die peak separations of Table 1 it can be seen 

that most of the cytochrome c mutants have similar electrochemical kinetics to the wild-

type cytochrome c, except His26Val mutant This is not suiprising, since aspartic acid 

(Asp) 50, tyrosine (Tyr) 67, threonine (Thr) 78 and asparagine (Asn) 52 are internal amino 

acids and their substitution by other amino acids does not significantiy change the protein 

surface structure and, hence, its interaction with the electrode. These results agree well 

with the hypothesis [2,4] that the promoter modified electrode surface does not recognize 

cytochrome c molecule very rigorously. The surface lysine residues around the exposed 

heme edge of cytochrome c, such as Lys 27 and Lys 72, have been suggested to be 

involved in binding to an electrode surface [22]. Since an electrode covered with a 

monolayer of bis(4-pyridyl) disulfide is an ideally hydrophilic surface, substitution of the 
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Figure 1. Molecular Structure of cytochrome c. This standard front view of horse 
heart cytochrome c in the oxidized state, illustrates the solvent exposed 
heme edge in the center of the molecule facing towards the reader. Only 
those amino acids attached directly to the heme (MetSO, Hisl8, Cysl4, 
Cysl7) are shown, all others are represented by circles depicting a-carbon 
atoms of the polypeptide backbone. All amide linkages are represented by 
a line between each a-carbon atom [14], The mutation sites for this study 
are marked. 
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Figure 2. Cyclic voltammograms of 0.1 mM cytochrome c Tyr67Phe mutant at a 4-
PyS-modified gold electrode in phosphate buffer solution (pH 7) with 0.5 
M NaCl. Scan rate: (a) 10, (b) 25, (c) 50, (d) 100, (e) 200 mV/s; initial 
potential, +0.20 V. 
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Table 1: Redox potentials, peak sq)arations and heterogeneous dectron transfer rate constants of 
cytochrome c mutants based upon ^ CV data at a scan rate of SO mV/s. 

protein redox potential 
(mV) 

peak sqiaration 
(mV) 

dectron transfer rate 
constant (10'^ cm/s) 

WT 8.1 69.0 9.62 

His26Val ^.5 91.7 2.62 

AspSOAig 11.5 73.9 6.47 

Tyr67Phe -21.5 73.3 6.72 

AsnS2Ile -30.1 74.5 5.42 

Thr78Val mmmmmm 
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polar hisddine (His) 26 around the Lys 27 with a non-polar valine (Val) may weaken the 

interaction between the cytochrome c and the electrode surface and cause a decrease in the 

electron-transfer kinetics as indicated by the larger AEp. 

Figure 3 shows the SERRS spectra of TyT67Phe mutant on both bare and modified 

silver electrodes at 0.0 mV. The spin state marker band at ISOS cm ' in spectrum B 

indicates that the heme group of the adsorbed Tyi67Phe mutant is in the native low spin, 

six coordinate configuration at the 4-PyS-modified Ag electrode. In contrast, the presence 

of the split ISOS and 1493 cm ' band at the bare Ag electrode indicates that a mixture of 

both low spin, six coordinate and high spin, five coordinate heme is present on the surface 

(spectrum A). The same behavior was also observed for the other cytochrome c mutants 

which emphasizes that the 4-PyS modifier plays an important role in stabilizing the native 

configuration of cytochrome c on the electrode surface. 

Figure 4 shows the SERRS spectra of Tyr67Phe mutant on 4-PyS-modified silver 

electrode as a function of the electrode potential. The oxidation state marker band at 1361 

cm'' in spectra (a) and (b) show that at open circuit and -4S mV potentials, this mutant is 

fully reduced. The band is shifted to 1372 cm"' when a potential of +30 mV is applied 

indicating that the cytochrome is fully oxidized. Figure S shows the potential dependence 

of the oxidation state marker in the SERRS spectra of the Tyr67Phe mutant From the 

plot, the fully oxidized and reduced potentials and the estimated redox potential can be 

obtained. Table 2 shows summarized the results obtained for all the cytochrome c 

mutants. Comparing Table 2 with Table 1 it can be seen that the potential ranges of Table 

2 are close to the peak separations of Table 1 for corresponding cytochrome c mutants; 
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Figure 3. Surface-enhanced resonance Raman spectra of the cytochrome c Tyr67Phe 
mutant on (A) a bare silver electrode, (B) a 4-PyS-modified silver electrode 
at 0.0 mV vs. SCE. Experimental conditions were as follows: laser 
excitation wavelength = 413.1 nm; laser power = 1 mW; exposure time = 
20 s/scan; number of scans accumulated = 20. 
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Figure 4. Surface-enhanced resonance Raman spectra of the cytochrome c Tyr67Phe 
mutant on a 4-PyS-modified silver electrode as a function of electrode 
potential: A) open circuit; B) -45 mV; C) 0 mV; D) +30 mV. Experimental 
conditions were the same as in Hgure 3. 
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Figure 5. Potential dependence of the oxidation state marker band in the surface-
enhanced resonance Raman spectrum of the Tyr67Phe mutant at (A) a bare 
silver electrode, (B) a 4-PyS-modified silver electrode. 
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Table 2: Fully oxidized and reduced potentials, potential ranges and estimated redox potentials of 
cyt.c mutants based upon the SERRS data. 

protein iiilly reduced 
potential (mv) 

Fully oxidized 
potential (mV) 

potential range 
(mV) 

estimated redox 
potential (mV) 

WT -40 30 70 12 

His26Val -100 0 100 -5 

AspSOAig -35 40 75 12 

Tyr67Phe -45 30 75 -22 

AsnS2ne -80 0 80 -30 

Thr78Val -70 20 90 -25 
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and that the estimated redox potentials in Table 2 are close to the redox potentials in Table 

1 for corresponding mutants. Thus, the SERRS results agree well with the CV results. The 

potential ranges obtained from the SERRS results indicate that most of the cytochrome c 

mutants have similar electrochemical reversibility on the modified silver electrodes, except 

His26Val, which was discussed above. 

Both the redox potentials of Table 1 and the estimated redox potentials of Table 

2 show that the so^alled "water mutants" have lower redox potentials than those of other 

cytochromes which means that the mutations increase the stability of the oxidized form 

of the protein. It was proposed [4] that mutations in these mutants, with loss of the 

internal water molecule, result in a configuration which resembles the oxidized 

conformation more closely than the reduced and this localized conformational change is 

likely to account for part of the shift in the redox potential. The mutation also affects the 

hydrogen-bonding of an interior water molecule and leads to a general increase in the 

hydrophobicity of the protein in the domain occupied by the mutated residues [IS]. The 

water mutants examined in this study include the following: Tyr67Phe, Asn52ne and 

Thr78Val. Figure 6 shows the diagram of the structure of cytochrome c in the region 

surrounding these mutations [23]. Residues on the 'left side' of heme plane are involved 

in maintaining a single water molecule in the hydrophobic interior of the protein, near the 

'lower' edge of heme plane [24,25]. These include the invariant residues tyrosine 67 ('top 

left'), asparagine 52 ('bottom left') and threonine 78 ('lower front'). It was reported that 

all three of these "second tier" mutants, involving residues which interact with the heme 

ligands but are not themselves ligands, exhibit increased stability of the closed fimctional 



www.manaraa.com

100 

Met 80] 

Hit 78 

Figure 6. Diagram of the structure of cytochrome c in the region important to the 
water mutation studied here. Fe indicates the heme iron atom, im shows the 
imidazole side chain of histidine 18, and S is the sulfur atom of methionine 
80. These are the axial ligands of the heme iron atom, from the "right" and 
the "left" sides of the protein molecule, respectively. I, U, m, and IV 
indicate the corresponc^g pyrrole rings of the heme. The amino acid 
residues are indicat^ in three-letter code placed near their a-carbon atoms. 
The molecule is viewed from the "front", deHned as the area containing the 
solvent-accessible edge of the heme plane, containing pyrrole rings II and 
ni. The heme plane is slightly titled to the left, so that the imidazole axial 
ligand on the right side has moved closer to the viewer than the sulfur axial 
ligand on the other side of the heme plane. HjO marks the internal water 
molecule hydrogen-bonded (dotted lines) to the side chains of asparagine 
52, tyrosine 67, and threonine 78 [171. 
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form of the heme crevice based upon measurement of the changes in the 695 nm 

absorption band of cytochrome (sensitive to the Fe-methionine bond) as a function of pH, 

heat and urea [10]. From the amino acid structure it can be seen that all of the three 

residues, tyrosine 67, asparagine 52 and threonine 78 are polar, but in the water mutants 

they are substituted by the non-polar residues phenylalanine, isoleucine and valine. Since 

three hydrogen bonds are required to hold the water molecule in the protein interior [26], 

the substitution of polar residues with non-polar residues in the water mutants eliminates 

one of these hydrogen bonds and leads to expulsion of the water molecule from its 

intramolecular position. This also liberates the asparagine 52 and threonine 78 side chains 

from their unfavorable internal position which may account for part of the increase in 

protein stability [23]. 

Resonance Raman spectroscopy of protein in the low frequency region can provide 

information about the interactions between amino acids and heme group. The resonance 

Raman spectra of cytochrome and Thr78Val and Tyr67Phe mutants in the low frequency 

region are shown in Figure 7 and Figure 8. Table 3 lists the resonance Raman frequencies 

and their normal mode assignments for wild type and the three water mutants of 

cytochrome c in the low frequency region. From the Table 3 it can be seen that there are 

considerable differences between wild-type cytochrome c and the water mutants. The 

band of Asn52Ile mutant decreases to a shoulder and a new band appears at 443 cm '. The 

V26 and Y24 bands of Tyr67Phe mutant become shoulders and a new Vjj band is observed 

at 260 cm '. The greatest changes occur in the Thr78Val mutant The y,j, v,8, V34, and V53 

bands become very weak. The band is shifted from 240 to 248 cm '. A new band y. 
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Figure 7. Resonance Raman spectra of 0.1 mM reduced cytochrome c (A) wild-type 
and (B) Tyr67Phe mutant at 77 K. Experimental conditions were the same 
as in Figure 3. The cytochromes were reduced by sodium dithionite. 
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Figure 8. Resonance Raman spectra of 0.1 mM reduced cytochrome c (A) wild-type 
and (B) Thr78VaI mutant at 77 K. Experimental conditions were the same 
as in Figure 7, 
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Table 3. Resonance Raman Frequencies and Their Normal Mode Assignments for 
Cytochrome c and The Water Mutants 

Assignment Local Coordinate WT Thr78Val Tyr67Phe AsnS2Ile 

Y21 (pyrfold).„» 571 569 571 571 
V49 6(pyr rotat) 539 536 539 536 
yi2 pyr swivel 521 521 522 521 
V33 5(pyr rotat) 480 477 480 480 

Y22 pyr swivel 448 448 448 450 , 443 
5{CpC.Cb) 6(CpC.Cb) 424,413 424,413 423,413 421,415 
5(CpC.S) 6(CpC.S) 402, 393 405, 394 402, 394 402, 394 
5(CpCcCd) 6(CpCcCd) 381,376 381 381, 376 381, 372 

V50 porph def 359 359 360 360 
Vg porph def 348 349 348 347 
V51 5(CpCi)uyn 308 307 308 310 
V9 6(C6C,)  ̂ 267 270 268 271 
Y7 Y(CaC„.) 289 

V52 SCCsCi),̂  260 
V26 5(C6CI),™ 240 248 240 242 
Y24 Y(CaC„) 230 228 230 228 
VS3 6(pyr transl) 209 210 206 
V34 5(C5CI),,,B 181 183 185 
Vig porph def 162 161 161 
YI3 Y(CaG„) 130 136 135 
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appears at 289 cm '. The 6(CpC,Cy bands at 424 and 413 cni ' decrease to shoulders. 

The 5(C^CeC<^ band at 376 cm * totally disappears. These differences indicate that the 

heme environment is strongly perturbed by the mutation. The side chain of threonine 78 

forms a hydrogen bond both to an interior water molecule and the anterior propionyl side 

chain of the heme [24,25^7,28]. When threonine is replaced by a valine in cytochrome 

c, both hydrogen bonds are broken, and there is a dramatic change in the properties of the 

protein [10]. The hydrogen bond between the threonine 78 and the anterior propionyl side 

chain of the heme holds the anterior propionyl side chain in its position and makes the 

CpCcQ bond rigid. Breaking this hydrogen bond will liberate the anterior propionyl side 

chain of the heme and make the CpCcQ bond more flexible. Thus, the S(CpCeC^ band 

at 376 cm ' disappears after the mutation. 

Ckmclusion 

Most of cytochrome c mutants examined in this study behave similarly with respect 

to electron transfer kinetics at electrodes because the mutations do not significantly change 

the protein surface structure. The water mutants Tyr67Phe, Thr78Val, and Asn52ne have 

much lower redox potentials than those of other cytochromes indicating that the mutation 

increases the stability of the oxidized form proteins. The surface-enhanced resonance 

Raman results also indicate that the heme groups of the adsorbed cytochrome c and its 

mutants are in the six-coordinate low spin (6cLS) configuration at bis(4-pyridyl) disulHde-

modified-silver electrodes, whereas mixtures of both 6cLS and five-coordinate high spin 

(5cHS) heme groups are present at the bare silver electrodes. The resonance Raman 

spectra of these mutants show considerable differences in the low frequency region as 
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compared to the wild-type cytochrome c which indicates that the heme environment is 

strongly perturbed by the mutation. 

Acknowledgeinents 

The authors are grateful for die financial support of the National Institute of Health 

(GM 35108). 

References 

1. J. E. Frew and H. A. O. HiU, Eur. J. Biochem. 1988, 172, 261. 

2. M. Tominaga, K. Hayashi and 1. Taniguchi, Anal. Sci. 1992, 8, 829. 

3. F. A. Amstrong, H. A. O. Hill and N. J. Walton, Acc. Chem. Res. 1988,21, 407. 

4. A. L. Bunows, L. Guo, H. H. O. Hill, G. McLendon and F. Sherman, Eur. J. 

Biochem. 1991, 202. 543. 

5. H. A. O. Hill and D. Whitford, J. Electroanal. Chem. 1987, 235, 153. 

6. S. Song, R. A. Clark, E. F. Bowden and M. J, Tarlov, J. Phys. Chem. 1993, 97, 

6564. 

7. J. M. Cooper, K. R. Greenough and C. J. McNeil, J. Electroanal. Chem. 1993,347, 

267. 

8. X. Qu, T. Lu, S. Dong, C. Zhou and T. M. Cotton, Bioelectrochem. and Bioenerg., 

1994, 34, 153. 

9. Z. Fang, S. Imabayashi, T. Kakiuki and K. Niki, J. Electroanal. Chem. 1995, 

394, 149. 



www.manaraa.com

107 

10. E. Margoliash, A. Schejter, T. I. Koshy, T. L. Luntz and A. E. Garber. in 

Bioenergetics, C. H. Kim and T. Ozawa, Eds., Plenum Press, New York, 1990. 

125-145. 

11. A. J. Wand and D. L. Stefano, Biochemistry, 1989,28, 186. 

12. Y. Feng, H. Roder, S. W, Englander, A. J. Wand and D. L. Stefano, Biochemistry, 

1989,28, 195. 

13. S. Fergruson-Miller, D. L. Brautigan and E. Margoliash, J. Biol. Chem.^ 1S^8,253, 

149. 

14. E. Margolissh and H. R. Bosshard, TIBS, 1983, 8, 316. 

15. A. Schejter, T. I. Koshy. T. L. Luntz, R. Sanishvili, I. Vig and E. Margoliash, 

Biochem. J. 1994,302, 95. 

16. H. Zhou, J. Am. Chem. Soc., 1994, 116, 10362. 

17. S. Othman, A. L. Urzin and A. Desbois, Biochem., 1994, 33, 15437. 

18. N. Parthasarathi, C. Hansen, S. Yamaguchi and T. G. Spiro, J Am. Chem. Soc., 

1987, 109, 3865. 

19. T. M. Cotton, J. H, Kim and G. D. Chumanov, J. Raman Spectrosc. 1991, 22, 

742. 

20. R. Picorel, R. E. Holt, R. Heald, T. M. Cotton and M. Seibert, J. Am. Chem. 

Soc., 1991, 113, 2839. 

21. R. E. Dickerson, Sci. Amer. 1972, April, 58 

22. M. J. Eddowes, H. A. O. Hill and K. Uosaki, J. Am. Chem. Soc. 1979, 101, 7113. 



www.manaraa.com

108 

23. A. Schejier, T. L. Luntz, T. 1. Koshy and E. Mai^oliash, Biochem. 19S^2,31,8336. 

24. T. Takano and R. E. Dickerson, J. Mol. Biol. 1S)81,1S3, 79. 

25. T. Takano and R. E. Dickerson, J. Mol. Biol. 1981, 153, 95. 

26. A. A. Rashin, M. lofin and B. Honig, Biochem. 1986,25, 3619. 

27. H. Ochi, Y. Hata, N. Tanaka, M. Kakudo, T. Sakurai, S. Aihara and Y. Morita, J. 

Mol. Biol. 1983, 116, 407. 

28. G. V. Louie, W. L. B. Hutchinson and G. D. Brayer, J. Mol. Biol. 1989,199,295. 



www.manaraa.com

109 

GENERAL SUMMARY 

Conventional electrochemical methods were coupled with structure sensitive 

techniques, resonance Raman and surface-enhanced resonance Raman spectroscopies to 

study the electrochemical behavior, electron transfer mechanisms and configuration of the 

cytochrome c at modified metal electrode surfaces. This combination provided structural 

as well as thermodynamic and kinetic information on the reaction of cytochrome c at an 

electrode/solution interface. Chapter 1 reevaluated two promoters, 2,2'-bipyridine and 

pyrazine which were studied by other research groups and a new electrode modification 

procedure was used. It was determined that both 2,2'-bipyridine and pyrazine act as 

promoters when self adsorbed over a sufficiently long dipping time. The pronwter 

characteristics of these two molecules were studied and compared with those of 4,4'-

bipyridine. The difference in their promoter behavior appears to result primarily from 

their different strengths of adsorption and not because electrodes modified with 2,2'-

bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reaction in 

cytochrome c. 

In Chapter 2, it was found that molecules with one functional group, such as 

pyridine, carbazole and thiophene can also accelerate the electrochemical reaction of 

cytochrome c. The behavior of the different promoters with one functional group indicates 

that an important requirement for an effective promoter is that it interacts with the 

electrode siuface. The crucial role of these three promoters may be to prevent 

denaturation and/or irreversible adsorption of cytochrome c or the deaminated and 

oligomeric components, which results in irreversible electrochemistry. 
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In Chapter 3, Quasi-reversible and direct electron transfer was observed between 

an iodide-niodified gold electrode and cytochrome c. The results suggest that an 

electrostatic interaction between cytochrome c and the iodide-modified electrode surface 

plays an important role in the electrochemical response. Results obtained by surface 

enhanced resonance Raman scattering (SERRS) spectroscopy indicate that the heme group 

of the adsorbed cytochrome c is in the native low spin, six coordinate configuration at the 

iodide-modified Ag electrode, whereas at the bare Ag electrode a mixture of both low 

spin, six coordinate and high spin, five coordinate heme is present on the surface. A 

possible mechanism for the role of iodide as a promoter of cytochrome c electrochemistry 

is that the adsorbed iodide ions on the electrode surface change the surface charge of the 

electrode which leads to a favorable orientadon of cytochrome c at the electrode surface 

for the electron transfer reactions. 

In Chapter 4, several cytochrome c mutants have been characterized by CV, RR 

and SERRS in order to study how the mutations affect the redox potential, electron 

transfer kinetics and the stability of cytochrome c, and to understand more about the 

structure/function relationships in redox proteins. It was found that most of cytochrome 

c mutants behave sunilarly at electrodes in terms of electron transfer kinetics because the 

mutations did not significantiy change the protein surface structure. The water mutants 

Tyr67Phe, Thr78Val, and AsnS2IIe have much lower redox potentials than those of other 

cytochromes indicating that these mutations increase the stability of the proteins. The 

resonance Raman spectra of the water mutants show considerable differences as compared 

to the wild-type cytochrome c which indicates that the heme environment is strongly 
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perturbed by the mutation. The surface-enhanced resonance Raman results also indicate 

that the heme groups of the adsorbed cytochrome c and its mutants are in the six-

coordinate low spin (6cLS) configuration at bis(4-pyridyl) disulfide-OKxlified-silver 

electrodes, whereas mixtures of both 6cLS and five<oordinate high spin (5cHS) heme 

groups are present at the bare silver electrodes. 
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